
Technical Report CSL-97-2R
August 1997, Revised March 1999

The Formal Semantics of PVS1

Sam Owre and Natarajan Shankar
owre@csl.sri.com shankar@csl.sri.com

URL: http://www.csl.sri.com/sri-csl-fm.html
SRI International
Computer Science Laboratory
Menlo Park CA 94025 USA

Computer Science Laboratory•333 Ravenswood Ave.•Menlo Park, CA 94025•(650) 326-6200 •Facsimile: (650) 859-2844

Abstract

A specification language is a medium for expressing what is computed
rather than how it is computed. Specification languages share some features
with programming languages but are also different in several important ways.
For our purpose, a specification language is a logic within which the behavior
of computational systems can be formalized. Although a specification can be
used to simulate the behavior of such systems, we mainly use specifications to
state and prove system properties with mechanical assistance.

We present the formal semantics of the specification language of SRI’s
Prototype Verification System (PVS). This specification language is based on
the simply typed lambda calculus. The novelty in PVS is that it contains very
expressive language features whose static analysis (e.g., typechecking) requires
the assistance of a theorem prover. The formal semantics illuminates several of
the design considerations underlying PVS, particularly the interaction between
theorem proving and typechecking.

iii

iv

Contents

1 Introduction 1

1.1 Real versus Idealized PVS . 2

1.2 Semantic Preliminaries . 3

1.3 Related Work . 5

1.4 Outline . 7

2 The Simple Type Theory 9

2.1 Contexts . 10

2.2 Type Rules . 10

2.3 Semantics . 12

2.4 Some Syntactic Operations . 16

2.5 Type Definitions . 17

2.6 Summary . 18

3 Adding Subtypes 20

3.1 Summary . 29

4 Dependent Types 30

4.1 Summary . 40

5 Theories and Parametric Theories 41

5.1 Theories without Parameters 41

5.2 Constant Definitions . 45

5.3 Parametric Theories . 45

5.4 Summary . 48

6 Conditional Expressions and Logical Connectives 49

6.1 Summary . 52

v

7 Proof Theory of PVS 53
7.1 PVS Proof Rules . 53

7.1.1 Structural Rules . 53
7.1.2 Cut Rule . 54
7.1.3 Propositional Axioms 54
7.1.4 Context Rules . 55
7.1.5 Conditional Rules . 55
7.1.6 Equality Rules . 55
7.1.7 Boolean Equality Rules 56
7.1.8 Reduction Rules . 56
7.1.9 Extensionality Rules 56
7.1.10 Type Constraint Rule 57

7.2 Soundness of the Proof Rules 57
7.3 Summary . 60

8 Conclusion 61

Bibliography 64

vi

Chapter 1

Introduction

PVS is a system for specifying and verifying properties of digital hardware
and software systems. The specification language of PVS is designed to admit
succinct, readable, and logically meaningful specifications. The PVS specifica-
tion language is designed for effective proof construction rather than efficient
execution. The design considerations underlying the language are therefore
somewhat different from those of a corresponding programming language. For
example, the language contains constructs that can be statically typechecked
only with the assistance of a theorem prover. This is acceptable because the
PVS specification language is intended for use in conjunction with powerful
support for automated theorem proving. The logic of PVS is based on a sim-
ply typed higher-order logic with function, record, and product types, and
recursive type definitions. This type system is extended with subtypes that
are analogous to subsets, and with dependently typed functions, records, and
products. The resulting type system has several advantages. It is possible, for
instance, to statically ensure that all array references are within their respec-
tive array bounds. PVS specifications are organized into theories that can be
parametric in types as well as individuals. While the semantics of the simply
typed fragment is straightforward, the extensions such as subtyping, depen-
dent typing, and (theory-level) parametricity do pose significant challenges.
This report presents a concise but idealized definition of the PVS specifica-
tion language and its intended formal set-theoretic semantics. It is neither
an overview of the PVS language nor a guide to the Prototype Verification
System (see the PVS user manuals [OSRSC98]).

The primary purpose of the formal semantics is as a useful reference for the
developers and users of PVS. The idealized core of the specification language
as presented here serves as a succinct foundation for studying the expressive
power of the language. Pertinent questions about PVS are answered directly

1

2 Chapter 1. Introduction

by the formal semantics presented here:

1. What is the semantic core of the language, and what is just syntactic
sugar?

2. What are the rules for determining whether a given PVS expression is
well typed?

3. How is subtyping handled, and in particular, how are proof obligations
corresponding to subtypes generated?

4. What is the meaning, in set-theoretic terms, of a PVS expression or
assertion?

5. Are the type rules sound with respect to the semantics?

6. Are the proof rules sound with respect to the semantics?

7. What is the form of dependent typing used by PVS, and what kinds of
type dependencies are disallowed by the language?

8. What is the meaning of theory-level parametricity, and what, if any, are
the semantic limits on such parameterization?

9. What language extensions are incompatible with the reference semantics
given here?

Chapter 8 summarizes the answers to these questions.

1.1 Real versus Idealized PVS

The semantic treatment in this report is incomplete in some important ways.
It does not treat the nonlogical parts of the language. In particular, it ignores
arithmetic and recursive definitions. It also omits abstract datatypes [OS97].
These will be treated in a future expanded version.

The present semantics also makes several idealizations from the real PVS
for the purpose of clarity. While the semantic treatment is not comprehensive,
the idealization of PVS used here is faithful to the implemented form of PVS.

1. No name resolution. All names must be in fully resolved form with their
theory name and actual parameters. We regard name resolution as a
convenience provided by the PVS type checker and not an operation
with any semantic relevance. A technical description of name resolution
in PVS will be given elsewhere.

1.2. Semantic Preliminaries 3

2. No overloading. As with name resolution, overloading is a syntactic
convenience with no semantic import.

3. No IMPORTINGs. The importing of theories is a hint to name resolution.
The semantic definition assumes that all instances of theories declared
prior to the present one are visible.

4. Variable declarations ignored. All variables must be locally declared.
Global variable declarations are regarded as a syntactic convenience.

5. No records. These are ignored in the semantic treatment since product
types capture all the semantically essential features of records.

1.2 Semantic Preliminaries

The PVS specification language is based on higher-order logic. This means
that variables can range over individuals (such as numbers) as well as functions,
functions of functions, and so on. As is well known, some type distinction is
needed; otherwise, it is easy to obtain a contradiction by defining the predicate
N(P) as ¬(P (P)) so that both N(N) and ¬N(N) hold. In the theory of
types [Chu40], the universe is stratified into distinct types so that a predicate
can be applied only to a lower type and thus cannot be applied to itself.

Types also serve as a powerful mechanism for detecting syntactic and se-
mantic errors through typechecking. This role of types is best exemplified by
their use in various programming languages such as Algol, Ada, and ML, and
is also heavily emphasized in the PVS type system.

The desirability for strong typing in a specification logic is not widely ac-
cepted. Fraenkel et al [FBHL84] express the opinion that such typing is repug-
nant in a mathematical logic since it constrains expressiveness by not allowing
individuals of differing types to be treated uniformly. Lamport [Lam94] argues
that type correctness is like any other program property and should be estab-
lished by means of a proof rather than by syntactic restraints. Lamport and
Paulson [LP97] analyze the tradeoffs between typed and untyped specification
languages. We claim that

1. Types impose a useful discipline on the specification.

2. Types lead to easy and early detection of a large class of syntactic and
semantic errors.

3. Type information is useful in mechanized reasoning.

4 Chapter 1. Introduction

The semantics of a higher-order logic is given by mapping the well-formed
types of the logic to sets , and the well-formed terms of the logic to elements
of the sets representing their type. The set constructions we use can be for-
malized within Zermelo-Fraenkel set theory with the axiom of choice (ZFC).
The intended interpretation of a function type in higher-order logic is that it
represents the set of all functions from the set representing the domain type to
the set representing the range types.1 PVS also has predicate subtypes that
are to be interpreted over the subsets of the set representing the parent type.

The semantics of PVS will be given by considering a sequence of increas-
ingly expressive fragments of PVS. The semantics of each fragment of PVS
will be presented in three steps. The first step is to define a set-theoretic
universe containing enough sets to represent the PVS types. The second step
is to define a typechecking operation that determines whether a given PVS
expression is well typed. The third step is to define a semantic function that
assigns a representation in the semantic universe to each well-typed PVS type
and term.

We first lay out the ZFC set constructions needed for defining the semantics
of PVS. The base types in PVS consist of the Booleans bool and the real
numbers real. The Booleans can be modeled by any two-element set, say 2
consisting of the elements 0 and 1, where 0 is the empty set and the only
element of the set 1. The real numbers can be captured by means of Dedekind
cuts or Cauchy sequences, and we label this set R.

To define the semantics, we need a universe that contains the sets 2 and
R and is closed under Cartesian products (written as X × Y) and power sets
(written as ℘(X)). Note that functions are modeled as graphs, that is, sets
of ordered pairs, so that a function type [A→B] is represented by a subset of
the powerset ℘([[A]] × [[B]]) of the Cartesian product of the sets [[A]] and [[B]]
representing A and B, respectively. A set F that is a subset of X × Y is the
graph of a function with domain X and range Y if for every x ∈ X there is
a y ∈ Y such that 〈x, y〉 ∈ F , and whenever 〈x, y〉 ∈ F and 〈x, y′〉 ∈ F , we
have y = y′. For such a set F , Function(F) holds and dom(F) = X. The
set of graphs of total functions from a set Y to a set X is represented as XY .
If F is the graph of a function and t an element in its domain, then F (t)

1It is only in the standard model of higher-order logic that the function type is required
to represent the set of all functions from the domain set to the range set. Higher-order
logic can be interpreted in general models where the function type can be interpreted in
any manner as long as it satisfies the various axioms such as application, abstraction, and
extensionality [And86]. Higher-order logic is complete with respect to the general models
interpretation so that a statement that is valid in all models is provable. It is, however,
incomplete with respect to the standard model.

1.3. Related Work 5

represents the result of applying the function F to t. At the semantic level, a
function F will never be applied to an argument t outside dom(F), because in
the PVS language, a function application is typechecked so that the argument
expression has the same type as the domain type of the function expression.

We can model the entire type universe of the simply typed fragment of
PVS by the set U , which is defined cumulatively by starting from the base
sets 2 and R, and including the Cartesian products, the function spaces, and
subsets of previously included sets, at each stage. Cartesian products are used
to model products in PVS, and function spaces model function types. Subsets
are needed to model predicate subtypes. It is sufficient to iterate these stages
up to the ordinal ω.

Definition 1 (type universe)

U0 = {2,R}
Ui+1 = Ui ∪ {X × Y | X, Y ∈ Ui} ∪ {XY | X, Y ∈ Ui} ∪

⋃
X∈Ui

℘(X)

Uω =
⋃
i∈ω

Ui

U = Uω

We refer to U as the basic universe.2 The semantic definitions below will
assign a set in U to each PVS type and an element in

⋃
U to each well-typed

term of PVS. The rank of a set X in U is the least i such that X ∈ Ui. The
notion of rank plays an important role in the semantics of dependent types
and parametric theories.

1.3 Related Work

There is a long history of work in specification languages. Many ideas sim-
ilar to those underlying the PVS specification language also occur in other
specification languages.

The wide-spectrum languages are typically based on set theory or higher-
order logic. The language VDM is one of the earliest such specification for-
malisms [Jon90]. It is based on a first-order logic with partial functions aug-
mented with datatype axioms. The datatype theories in VDM include those

2The inclusion of XY in U is actually redundant but aids clarity.

6 Chapter 1. Introduction

for finite sets, maps, sequences, and recursive datatypes such as lists and trees.
VDM has a notion of datatype invariants that yields a simple form of predicate
subtyping. Operations on state are specified in terms of pre-condition/post-
condition pairs. Specifications are structured into parameterized modules. In
contrast to VDM, the PVS language is based on strictly typed higher-order
logic with a built-in notion of predicate subtyping and dependent typing. The
resulting PVS logic is more compact in that many of the datatypes that are
presented axiomatically in VDM can be defined within PVS. There is no built-
in notion of state in PVS since it is possible to use the higher-order logic of
PVS to define a variety of state-based formalisms, including various linear and
branching-time temporal logics. VDM uses a 3-valued logic for the logical con-
nectives in order to deal with partial functions, whereas PVS uses a classical
2-valued logic and predicate subtyping to assign a type to a partial function
as a total function on its domain of definition. Jones [Jon90] provides only an
informal semantics for VDM. The RAISE system is a comprehensive toolset
based on the ideas of VDM [RAISE92].

The Z specification language [Spi88] is another wide-spectrum language
based on a typed first-order set theory. A Z specification is a collection
of schemas consisting of declarations of types and constants accompanied
with invariants. Z schemas can either specify datatype invariants or pre-
condition/post-condition constraints. A schema calculus is used to combine
schemas using logical connectives. Spivey [Spi88] presents a formal semantics
for Z without giving a proof system or a soundness proof. Spivey’s treat-
ment of partial functions in the Z semantics employs the commonly used
convention that f(a) when a is not in the domain of a is some arbitrarily
chosen value. This is fine for most purposes but can be confusing when deal-
ing with recursively defined partial functions. For example, the definition
bad(x) = 1 + bad(x) is everywhere undefined but admitting it as an axiom
leads to an immediate contradiction. Z also lacks any mechanism for conser-
vative extensions such as definitional principles for constants and datatypes so
that the consistency of Z specification has to be demonstrated by exhibiting a
model.

Algebraic specification languages like OBJ [FGJM85] and Larch [GH93]
provide an equational/rewriting framework for specifying datatypes and op-
erations on datatypes. OBJ has many of the same theory parameterization
mechanisms as PVS. The subsort mechanism in OBJ is also similar except
that it is handled by introducing retracts or runtime checks rather than proof
obligations generated by the type checker. The OBJ logic is quite restricted
compared to PVS since it is based on a first-order, equational framework with
an initial semantics where two ground terms are distinct unless they can be

1.4. Outline 7

proved equal. OBJ has very limited support for proof development and is
primarily intended as an executable specification language.

The specification languages that are closer to PVS are those that ac-
company various automated proof checking systems. The closest of these is
Ehdm [EHDM93], which employs a similar higher-order logic with subtyping
and proof obligation generation. Ehdm lacks many of the features of PVS:
subtyping is restricted to type declarations and there is no dependent typing.

Higher-order logic is used by other systems such as HOL [GM93] and
TPS [AMCP84]. Both HOL and TPS employ simply typed higher-order logic
without features such as subtyping, dependent typing, or parametric theories.
Andrews [And86] gives a thorough account of the semantic aspects of higher-
order logic. The formal semantics of the HOL logic are carefully outlined (by
Pitts) in the book by Gordon and Melham [GM93].

Systems like Coq [DFH+91] and Nuprl [CAB+86] are based on intuitionistic
higher-order logics. Coq allows quantification over types, whereas Nuprl has
quantification over a hierarchy of type universes. Both logics admit dependent
typing. The set-theoretic semantics of dependently typed intuitionistic type
theories has been studied by Dybjer [Dyb91] and Howe [How91, How96]. Not
surprisingly, their semantic treatment of dependent typing is similar to the
one given here but they do not delimit the possible dependencies as is done
with the PVS semantics. The PVS semantics presented here clearly specifies
the kind of type dependencies that are disallowed in the logic. Dybjer and
Howe also do not address subtyping but do describe the semantics of language
features missing in PVS (type universes in the case of Howe, and inductive
families in the case of Dybjer). Dybjer does not identify the universe over
which terms and types are interpreted. Howe requires an infinite sequence of
inaccessible cardinals for his universe construction.

1.4 Outline

In Chapter 2, we define the syntax and semantics of the simply typed fragment
of PVS. Type definitions are also introduced in this chapter along with the
definition of definitional equivalence on types. Chapter 3 adds subtyping to
the simply typed fragment and specifies the additional type rules and semantic
definitions that are needed. Chapter 4 extends the language with dependent
function and product types. Theories and parametric theories are introduced
into the language in Chapter 5. The type rules and semantics for conditional
expressions and the logical connectives defined using conditional expressions
are introduced in Chapter 6. Chapter 7 specifies the axioms and inference

8 Chapter 1. Introduction

rules of PVS.

Chapter 2

The Simple Type Theory

PVS is a strongly typed specification language. The simply typed fragment in-
cludes types constructed from the base types by the function and product type
constructions, and expressions constructed from the constants and variables
by means of application, abstraction, and tupling. Expressions are checked
to be well typed under a context , which is a partial function that assigns a
kind (one of TYPE, CONSTANT, or VARIABLE) to each symbol, and a type to
the constant and variable symbols. We use the metavariables Γ, ∆, and Θ
to range over contexts. The metavariables A, B, and T range over PVS type
expressions, the metavariables r and s range over symbols (identifiers), the
metavariables x and y range over PVS variables, and the metavariables a, b,
f , and g range over PVS terms. Given a context Γ and a symbol s, we say
that Γ(s) is undefined if s is not declared in Γ.

The pretypes of the simple type theory include the base types such as bool
and real. A function pretype from domain pretype A to range pretype B is
constructed as [A→B]. A product pretype of A1, A2 is constructed as [A1, A2].
A type is a pretype that has been typechecked in a given context. Types in
the simple type theory are simple enough that the only distinction between
pretypes and types is that the symbols in a type must be appropriately declared
in the given context.

Example 2.1 (pretypes) bool, real, [bool, real], [[real, bool]→bool].

The preterms of the language consist of the constants, variables, pairs,
projections, applications, and abstractions. The metavariables c and d range
over constants. Pairs are of the form (a1, a2) where each ai is a preterm.
Applications have the form f a where f and a are preterms. A pair projection
is an expression of the form pi a, where i ∈ {1, 2}. Lambda abstractions have

9

10 Chapter 2. The Simple Type Theory

the form λ(x : T) : a, where T is a pretype and a is a preterm. Parentheses
are used for disambiguation. A term is a preterm that has been typechecked
in a given context.

Example 2.2 (preterms) TRUE, ¬ TRUE, λ (x : bool) : ¬(x),
p2 (TRUE, FALSE), (TRUE, λ (x : bool) : ¬ (¬ x)).

2.1 Contexts

A context is a sequence of declarations, where each declaration is either a type
declaration s : TYPE, a constant declaration c : T where T is a type, or
a variable declaration x : VAR T . Preterms and pretypes are typechecked
with respect to a given context. The empty context is represented as {}. The
well-formedness rules for contexts are presented below. A context can also
be applied as a partial function so that for a symbol s with declaration D,
(Γ, s : D)(s) = D and (Γ, s : D)(r) = Γ(r) for r 6= s. If s is not declared in Γ,
then Γ(s) is undefined. If Γ is a context, then for any symbol s, the kind of
the symbol s in Γ is given by kind(Γ(s)). If the kind of s in Γ is CONSTANT or
VARIABLE, then the type(Γ(s)) is the type assigned to s in Γ.

Example 2.3 (context)
bool : TYPE, TRUE : bool, FALSE : bool, x : VAR [[bool, bool]→bool]

2.2 Type Rules

The type rules for the simple type theory are given by a recursively defined
partial function τ that assigns

1. A type τ(Γ)(a) to a preterm a that is well typed with respect to a context
Γ.

2. The keyword TYPE as the result of τ(Γ)(A) when A is a well-formed type
under context Γ.

3. The keyword CONTEXT as the result of τ(Γ)(∆) when ∆ is a well-formed
context under context Γ. The context Γ is empty for the simply typed
fragment so that typechecking is always invoked as τ()(Γ).

Otherwise, τ is undefined in the case of an ill-typed preterm or an ill-formed
type or context.

2.2. Type Rules 11

The type rules are given by the recursive definition for τ . Typechecking
in PVS assigns a “canonical” type to a preterm. Customarily, type rules are
presented as inference rules, but a functional presentation is more appropriate
for PVS since

1. The type assignment is deterministic. A term can, in general, though
not in the simply typed fragment, be assigned a number of types but it
always has at most one canonical type.

2. The soundness proof need only show that the meaning of the term is an
element of the meaning of its canonical type. Thus, only the canonical
type derivation for a term has to be shown sound and not every valid
type derivation.

3. The meaning of a term is therefore given by recursion on the term itself
and not on its typing derivation. There is no need to show separately that
this meaning is coherent , that is, independent of the typing derivation.

A functional presentation of the type rules also leads to natural and straight-
forward soundness arguments. Note that the well-formedness rules for contexts
and types are trivial in the simply typed situation but become more mean-
ingful when the type theory is extended. Note also that in the type rules for
expressions and types, the well-formedness of the relevant context is not ex-
plicitly checked. These rules do preserve the well-formedness of the context in
each recursive call so that if the initial context is well formed, then so is every
intermediate one.

Definition 2 (type rules)

τ()({}) = CONTEXT

τ()(Γ, s : TYPE) = CONTEXT, if Γ(s) is undefined

and τ()(Γ) = CONTEXT

τ()(Γ, c : T) = CONTEXT, if Γ(c) is undefined,

τ(Γ)(T) = TYPE,

and τ()(Γ) = CONTEXT

τ()(Γ, x : VAR T) = CONTEXT, if Γ(x) is undefined,

τ(Γ)(T) = TYPE,

and τ()(Γ) = CONTEXT

τ(Γ)(s) = TYPE, if kind(Γ(s)) = TYPE

τ(Γ)([A→B]) = TYPE, if τ(Γ)(A) = τ(Γ)(B) = TYPE

12 Chapter 2. The Simple Type Theory

τ(Γ)([A1, A2]) = TYPE, if τ(Γ)(Ai) = TYPE for 1 ≤ i ≤ 2

τ(Γ)(s) = type(Γ(s)),

if kind(Γ(s)) ∈ {CONSTANT, VARIABLE}
τ(Γ)(f a) = B, if τ(Γ)(f) = [A→B] and τ(Γ)(a) = A

τ(Γ)(λ(x : T) : a) = [T→τ(Γ, x : VAR T)(a)], if Γ(x) is undefined

and τ(Γ)(T) = TYPE

τ(Γ)((a1, a2)) = [τ(Γ)(a1), τ(Γ)(a2))]

τ(Γ)(pi a) = Ti, where

τ(Γ)(a) = [T1, T2]

In the type rule for lambda abstraction, the constraint that Γ(x) must be
undefined can be satisfied by suitably renaming the bound variable since we
treat terms as equivalent modulo the renaming of bound variables.

Example 2.4 (type rules) Let Ω label the context bool : TYPE, TRUE :
bool, FALSE : bool

τ()({}) = CONTEXT

τ()(Ω) = CONTEXT

τ(Ω)([[bool, bool]→bool]) = TYPE

τ(Ω)((TRUE, FALSE)) = [bool, bool]

τ(Ω)(p2(TRUE, FALSE)) = bool

τ(Ω)(λ(x : bool) : TRUE) = [bool→bool]

2.3 Semantics

Recall that a preterm a with a type assigned by τ under context Γ is said to be
a term of type τ(Γ)(a) in the context Γ. If γ is an assignment for the symbols
declared in context Γ, the semantics of the simple type theory of PVS is given
by mapping a type T to a (possibly empty) setM(Γ | γ)(T), and a term a with
assigned type T to an element of the set M(Γ | γ)(T) in the basic universe
U . The assignment γ is a list of bindings of the form {s1 ← t1} . . . {sn ← tn}.
The application of an assignment γ to a symbol s is such that γ{s← t}(s) is
t, whereas γ{r ← t}(s) is γ(s) when r 6≡ s.

2.3. Semantics 13

The meaning function M returns the meaning of a well-formed type A
and a well-formed expression a in the context Γ under an assignment γ as
M(Γ | γ)(A) and M(Γ | γ)(a),respectively.

The meanings of type names, constants, and variables declared in Γ are
obtained from the assignment γ. A function type is mapped to the correspond-
ing function space. A product type is mapped to the corresponding Cartesian
product. An application term is interpreted by means of set-theoretic function
application. A lambda abstraction yields the graph of the corresponding func-
tion. A pair expression is mapped to the corresponding set-theoretic ordered
pair.

Definition 3 (meaning function)

M(Γ | γ)(s) = γ(s),

if kind(Γ(s)) ∈ {TYPE, CONSTANT, VARIABLE}
M(Γ | γ)([A→B]) = M(Γ | γ)(B)M(Γ | γ)(A)

M(Γ | γ)([T1, T2]) = M(Γ | γ)(T1)×M(Γ | γ)(T2)

M(Γ | γ)(f a) = (M(Γ | γ)(f))(M(Γ | γ)(a))

M(Γ | γ)(λ(x : T) : a) = {〈y, z〉 | y ∈M(Γ | γ)(T),
z =M(Γ, x : VAR T | γ{x← y})(a)}

M(Γ | γ)((a1, a2)) = 〈M(Γ | γ)(a1),M(Γ | γ)(a2)〉
M(Γ | γ)(pi a) = ti, where M(Γ | γ)(a) = 〈t1, t2〉

Example 2.5 (meaning function) Let ω be an assignment for the context
Ω in Example 2.4, of the form

{bool← 2}{TRUE← 1}{FALSE← 0}

then

M(Ω | ω)([bool, bool]) = 2× 2

M(Ω | ω)((TRUE, FALSE)) = 〈1,0〉
M(Ω | ω)(λ(x : bool) : TRUE) = {〈0,1〉, 〈1,1〉}

Definition 4 (satisfaction) A context assignment γ is said to satisfy a con-
text Γ (in symbols γ |= Γ) iff

14 Chapter 2. The Simple Type Theory

1. γ(bool) = 2,

2. γ(TRUE) = 1,

3. γ(FALSE) = 0,

4. γ(s) ∈ U whenever kind(Γ(s)) = TYPE, and

5. γ(s) ∈M(Γ | γ)(type(Γ(s)))
whenever kind(Γ(s)) ∈ {CONSTANT, VARIABLE}.

Example 2.6 (satisfaction)

1. The assignment ω satisfies context Ω.

2. The assignment ω{one ← 1}{zero ← 0} satisfies the context
Ω, one : TYPE, zero : one.

We need one useful proposition that asserts that typing judgements are
not invalidated when the context is extended.

Proposition 2.7 If τ()(Γ) = τ()(Γ′) = CONTEXT and Γ is a prefix of Γ′, then
for all pretypes A, τ(Γ)(A) = TYPE implies τ(Γ′)(A) = TYPE, and for all
preterms a, τ(Γ)(a) = A implies τ(Γ′)(a) = A.

The following theorems follow from the induction suggested by the defini-
tions of τ and M. The first of these is straightforward and is given without
proof.

Theorem 1 (type construction) If τ()(Γ) = CONTEXT and τ(Γ)(a) = A,
then τ(Γ)(A) = TYPE.

Theorem 2 (type soundness) If τ()(Γ) = CONTEXT, γ satisfies Γ, and τ(Γ)(A) =
TYPE, then M(Γ | γ)(A) ∈ U .

Proof. The proof is by induction on the structure of the pretype A. Recall
that if X ∈ U , then for some i, X ∈ Ui. This yields three cases:

1. A ≡ s: By Definition 2, Γ(s) is defined and kind(Γ(s)) is TYPE. Then by
Definition 3, M(Γ | γ)(s) is γ(s), and by Definition 4, γ(s) ∈ U .

2.3. Semantics 15

2. A ≡ [B→C]: We then have that τ(Γ)(B) = τ(Γ)(C) = TYPE. Letting X
labelM(Γ | γ)(B), and Y labelM(Γ | γ)(C), we have by the induction
hypothesis that X ∈ U and Y ∈ U . Let j be the least rank such
that M(Γ | γ)(B) ∈ Uj and M(Γ | γ)(C) ∈ Uj. By Definition 3,
M(Γ | γ)(A) = Y X , and hence M(Γ | γ)(A) ∈ Uj+1 by Definition 1.

3. A ≡ [A1, A2]: Again by Definition 2 and the induction hypothesis, we
have for each i ∈ {1, 2}, thatM(Γ | γ)(Ai) ∈ U . Let j be the least rank
such that for i ∈ {1, 2}, M(Γ | γ)(Ai) ∈ Uj. Then, it is easy to verify
from Definition 1 that M(Γ | γ)(A) ∈ Uj+1.

Theorem 3 (term soundness) If τ()(Γ) = CONTEXT, γ satisfies Γ, and τ(Γ)(a)
is defined and equal to A, then M(Γ | γ)(a) ∈M(Γ | γ)(A).

Proof. The proof is by induction on the structure of preterms.

1. a ≡ s: By Definition 2, we have that type(Γ(s)) = A. By Definitions 3
and 4, we have that M(Γ | γ)(a) = γ(s) and γ(s) ∈M(Γ | γ)(A).

2. a ≡ (f b): By Definition 2, τ(Γ)(f) = [B→A], and τ(Γ)(b) = B, for some
B such that τ(Γ)(B) = TYPE. Let M(Γ | γ)(A) be X and M(Γ | γ)(B)
be Y , then by Definitions 2 and 3, and the induction hypothesis, we
have M(Γ | γ)(f) ∈ XY and M(Γ | γ)(b) ∈ Y . It therefore follows by
Definition 3 that M(Γ | γ)((f b)) = (M(Γ | γ)(f))(M(Γ | γ)(b)), and
hence M(Γ | γ)((f b)) ∈ X.

3. a ≡ (λ(x : C) : b): By Definition 2, we have that τ(Γ)(a) is [C→B],
where τ(Γ, x : VAR C)(b) is B. Let X be M(Γ | γ)(C), and Y be
M(Γ, x : VAR C | γ{x ← u}))(B). By the induction hypothesis, we
have that for any u ∈ Y , M(Γ, x : VAR C | γ{x ← u})(b) ∈ X. Since
M(Γ | γ)(a) is {〈u, v〉 | u ∈ X, v =M(Γ, x : VAR C | γ{x← u})(b)}, we
have that M(Γ | γ)(a) ∈ XY .

4. a ≡ (a1, a2): By Definition 2, τ(Γ)(a) = [A1, A2], where τ(Γ)(ai) = Ai for
i ∈ {1, 2}. By the induction hypothesis,M(Γ | γ)(ai) ∈M(Γ | γ)(Ai) for
i ∈ {1, 2}. By Definition 3,M(Γ | γ)(a) = 〈M(Γ | γ)(a1),M(Γ | γ)(a2)〉
and henceM(Γ | γ)(a) is an element ofM(Γ | γ)(A) which isM(Γ | γ)(A)×
M(Γ | γ)(An).

16 Chapter 2. The Simple Type Theory

5. a ≡ pi b: In this case, we know by Definition 2 that τ(Γ)(b) = [A1, A2]
with i ∈ {1, 2}, and τ(Γ)(a) = Ai. By the induction hypothesis,M(Γ | γ)(b) =
〈t1, t2〉, and by Definition 3, M(Γ | γ)(a) = ti and M(Γ | γ)(τ(Γ)(b)) =
M(Γ | γ)(A1)×M(Γ | γ)(A2), hence M(Γ | γ)(a) ∈M(Γ | γ)(Ai).

These three theorems (1, 2, and 3) are the key invariants that must be
satisfied by the semantics when the language is extended below with type
definitions, subtypes, dependent types, and parametric theories.

2.4 Some Syntactic Operations

We first define the operation of collecting the free variables of a term a in a
given context Γ as FV (Γ)(a), and then define the operation of substitution.

Definition 5 (free variables)

FV (Γ)(s) =

{
{s}, if kind(Γ(s)) = VARIABLE

∅, otherwise

FV (Γ)(f a) = FV (Γ)(f) ∪ FV (Γ)(a)

FV (Γ)(λ(x : T) : a) = FV (Γ, x : VAR T)(a)− {x}
FV (Γ)((a1, a2)) = FV (Γ)(a1) ∪ FV (Γ)(a2)

FV (Γ)(pi a) = FV (Γ)(a)

Definition 6 (substitution)

s[a1/x1, . . . , an/xn] =

{
ai, if for some minimal i, s ≡ xi
s, otherwise

(f a)[a1/x1, . . . , an/xn] = (f [a1/x1, . . . , an/xn]

a[a1/x1, . . . , an/xn])

(λ(y : T) : a)[a1/x1, . . . , an/xn] = (λ(y′ : T) : a[y′/y, a1/x1, . . . , an/xn]),

where y′ is a fresh variable

(b1, b2)[a1/x1, . . . , an/xn] = (b1[a1/x1, . . . , an/xn],

b2[a1/x1, . . . , an/xn])

(pi a)[a1/x1, . . . , an/xn] = (pi a[a1/x1, . . . , an/xn])

2.5. Type Definitions 17

Recall that terms are treated as syntactically equivalent modulo alpha
conversion. The above definitions must be extended as more features are
added to the language.

2.5 Type Definitions

Here we enrich contexts so that type symbols may have definitions. PVS does
not allow recursive type definitions1 so a type declaration/definition in a con-
text may use only the symbols declared in the prior part of the context. The
main difference in the extended language is that type names can have defi-
nitions. In such cases, the definitions rather than the type names are used
to determine the actual type of an expression. In other words, two type ex-
pressions are treated as the same if they are definitionally equivalent . Most
other specification languages tend to employ the weaker notion of name equiv-
alence where syntactically different types are treated as distinct even when
their definitions coincide.

To accommodate type definitions, a context can contain type declarations
of the form s : TYPE = T , where T is a type. If context Γ contains such
a declaration for s, then definition(Γ(s)) is T . To extend τ to handle type
definitions under definitional equivalence, we must ensure that τ returns the
canonical form of a type where all defined types have been replaced by their
definitions. The operation δ(Γ)(T) returns the expanded form of a type relative
to the context Γ.

Definition 7 (expanded type)

δ(Γ)(s) = s, if definition(Γ(s)) is empty

δ(Γ)(s) = δ(Γ)(definition(Γ(s))), if definition(Γ(s)) is nonempty

δ(Γ)([A→B]) = [δ(Γ)(A)→δ(Γ)(B)]

δ(Γ)([T1, T2]) = [δ(Γ)(T1), δ(Γ)(T2)]

The typing rules are augmented to return the type in expanded form. The
main issue here is to determine that the definition part of a type declaration
in a context is well formed relative to the preceding context. We also need
to ensure that τ returns the expanded form of the type corresponding to a
preterm.

1For the moment, we are not considering the PVS DATATYPE mechanism, which is a form
of recursive type definition [OS97]. Recursive datatypes in the context of the HOL proof
checking system are described by Melham [Mel89].

18 Chapter 2. The Simple Type Theory

Definition 8 (type rules with type definitions)

τ()(Γ, s : TYPE = T) = CONTEXT, if Γ(s) is undefined,

τ()(Γ) = CONTEXT,

and τ(Γ)(T) = TYPE

τ(Γ)(s) = δ(Γ)(type(Γ(s))),

if kind(Γ(s)) ∈ {CONSTANT, VARIABLE}

Note that the δ operator is idempotent, and τ(Γ)(a) for a term a always
returns an expanded type, that is, δ(τ(Γ)(a)) = τ(Γ)(a).

We do not need to update the definition of M from Definition 3 since the
syntax for terms is unchanged, but we do need to revise the notion of a satis-
fying context assignment (from Definition 4) to respect the type definitions.

Definition 9 (satisfaction with type definitions) An assignment γ sat-
isfies a context Γ if in addition to the conditions in Definition 4, whenever
kind(Γ(s)) = TYPE and definition(Γ(s)) (abbreviated as T) is nonempty, then
γ(s) =M(Γ | γ)(T).

Theorems 1 and 2 and 3 continue to hold under these extensions, and the
proofs are easily adapted to the modified definitions.

Example 2.8 (type definition) Let Ω′ be the context
Ω, boolop : TYPE = [[bool, bool]→bool],∨ : boolop. Then

τ()(Ω′) = CONTEXT

δ(Ω′)(boolop) = [[bool, bool]→bool],

τ(Ω′)(∨) = [[bool, bool]→bool]

2.6 Summary

We have defined the simply typed fragment of PVS by introducing the syn-
tax for pretypes and preterms, the type rules and semantics for well-formed
contexts, types, and terms. The type rules are presented in a novel functional
style where each well-formed context is assigned the label CONTEXT, each well-
formed type is assigned the label TYPE, and each well-formed term is assigned

2.6. Summary 19

a canonical type. The semantics takes a satisfying assignment for a context
and maps a well-formed type to a set and a well-formed term to an element
of the set corresponding to its canonical type. We then defined the syntactic
operations of collecting the free variables in an expression and for substituting
terms for variables in an expression.

The simple type theory is then extended with type definitions. With this
extension, two type expressions are treated as equivalent if they are identical
after all type definitions have been expanded. The operation δ returns the
expanded form of a given type expression.

Chapter 3

Adding Subtypes

Subtyping is one of the main features of the PVS specification language.1 Sub-
typing in PVS corresponds to the set-theoretic notion of a subset. It raises
several delicate issues that were absent in the language presented thus far. In
the simply typed fragment, each type corresponds to a set of values that is
somehow structurally different from the set of values for another type so that
a term has at most one type. Subtyping makes it possible to introduce the
natural numbers as a subtype of the reals, and to treat the primes, the even
numbers, and the odd numbers as subtypes of the natural numbers. With
subtyping, a term can obviously have several possible types, but the type-
checking function τ may return only a single type. We constrain τ to return
a natural canonical type of an expression that is given by the declarations of
the symbols in the expression. If the expression is used in a context where
the expected type is a supertype of its canonical type, then the type correct-
ness is straightforward. If the expected type is a subtype that is compatible
with the canonical type of the expression, then typechecking generates proof
obligations asserting that the expression satisfies the predicate constraints im-
posed by the expected type. Two types are compatible if they have equivalent
maximal supertypes. Type equivalence in the presence of subtypes is not a
simple notion. Subtyping also introduces the possibility of types being empty.
Typed lambda calculi with possibly empty types have been studied by Meyer,
Mitchell, Moggi, and Statman [MMMS90]. This chapter introduces predicate
subtypes and defines the notions of compatibility and type equivalence prior
to presenting the type rules and semantics.

We restrict our attention to contexts Γ that extend the declarations:

bool : TYPE,

1The form of subtyping used in PVS is derived from a suggestion of Friedrich von Henke.

20

21

TRUE : bool,

FALSE : bool,

boolop : [[bool, bool]→bool],
¬ : [bool→bool],
∨ : boolop,

∧ : boolop,

⊃ : boolop

We will abuse PVS notation to employ the customary infix forms of operations
like ∨, ∧, and ⊃. The pretype corresponding to a predicate subtype has the
form {x : T | a} where x is a symbol, T is a pretype, and a is a preterm.
A predicate type in PVS is a function type where the range is the primitive
type bool. A predicate is a term that has a predicate type. If a is a term
of type bool, then we can define the subtype {x : T | a} consisting of those
elements e of T satisfying a[e/x] (e substituted for x in a). Since the elements
of the subtype {x : T | a} satisfy the predicate λ(x : T) : a, we call this type
a predicate subtype to distinguish it from other forms of subtyping. Universal
quantification ∀(x : T) : a is just an abbreviation for the term (λ(x : T) : a) =
(λ(x : T) : TRUE). Although we use the equality predicate in the definition of
universal quantification and in the definitions below, the actual introduction of
equality is deferred to a later section following the introduction of parametric
theories. The equality between PVS terms of function type is to be interpreted
as extensional equality. Note that the ‘=’ symbol is used both for the formal
equality symbol in the language and for metatheoretic equality.

Our first step will be to define the notion of a maximal supertype of a given
type as µ(T). A maximal type T is one such that µ(T) = T . In a given context,
we will apply µ only to the expanded form (given by δ) of a type expression.

Definition 10 (maximal supertype)

µ(s) = s

µ({x : T | a}) = µ(T)

µ([A→B]) = [A→µ(B)]

µ([A1, A2]) = [µ(A1), µ(A2)]

Note that since subtypes correspond to subsets, in taking the maximal super-
type of a function type, the domain type is held fixed. In most type theo-
ries with subtypes, the rule for subtyping between function types [A→B] and
[A′→B′] requires showing that A′ is a subtype of A, and B is a subtype of B′.

22 Chapter 3. Adding Subtypes

Subtyping between function types is therefore said to be contravariant in the
domain type and covariant in the range type. Subtyping on function types in
PVS is covariant in the range type but is neither covariant nor contravariant
in the domain type. This means that the function type [nat→nat] is not a
supertype of the function type [int→nat]. Such a subtyping relation would
violate extensionality . Two functions on nat are extensionally equal when
they return equal values when applied to equal arguments in nat. Consider
two functions in [nat→nat]: abs which returns the absolute value, and idnat
which behaves as an identity function on natural numbers and returns 0 other-
wise. These two functions will be erroneously identified if they can be viewed
as being of type [nat→nat], and the subset interpretation of subtypes would
be lost.

We will also employ a weaker supertype µ0(T) or the direct supertype, that
only considers supertypes of explicitly given subtypes of the form {x : T | a}.

Definition 11 (direct supertype)

µ0({x : T | a}) = µ0(T)

µ0(T) = T, otherwise

Example 3.1 (maximal supertype) Given a context containing the decla-
rations

int : TYPE,
0 : int,
≤: [[int, int]→bool],
nat : TYPE = {i : int | 0 ≤ i}
natinjection : TYPE = {f : [nat→nat] | ∀(i, j : nat) : f(i) = f(j) ⊃ i = j}

we have

µ(natinjection) = µ([nat→nat])

= [nat→µ(nat)]

= [nat→int]

µ0(natinjection) = [nat→nat]

Note that µ(µ(A)) = µ(A). Note also that a maximal supertype is never a
subtype. We can in fact collect the predicates that constrain a type A relative
to its maximal supertype µ(A) as π(A).

23

Definition 12 (subtype constraints)

π(s) = λ(x : s) : TRUE

π({y : T | a}) = λ(x : µ(T)) : (π(T)(x) ∧ a[x/y])

π([A→B]) = λ(x : [A→µ(B)]) : (∀(y : A) : π(B)(x(y)))

π([A1, A2]) = λ(x : [µ(A1), µ(A2)]) : (π(A1)(p1 x) ∧ π(A2)(p2 x))

Observe that in Definition 12, if τ(Γ)(A) = TYPE, then τ(Γ)(π(A)) = [µ(A)→bool].2

Example 3.2 (subtype constraints)

π(nat)

= λ(j : int) : 0 ≤ j

π([nat→nat])

= λ(g : [nat→int]) : ∀(i : nat) : (λ(j : int) : 0 ≤ j)(g(i))

π(natinjection)

= λ(f : [nat→int]) : π([nat→nat])(f)
∧ (∀(i, j : nat) : f(i) = f(j) ⊃ i = j)

= λ(f : [nat→int]) :

(λ(g : [nat→int]) : ∀(i : nat) : (λ(j : int) : 0 ≤ j)(g(i)))(f)
∧ (∀(i, j : nat) : f(i) = f(j) ⊃ i = j)

Observe that π(µ(A)) is essentially equivalent to λ(x : µ(A)) : TRUE.
Since the subtype {x : T | p(x)∧q(x)} can also be written as {x : T | q(x)∧

p(x)}, we need a notion of equivalence between types. One way to do this is to
make types “first-class” and to allow explicit theorems to be proved about type
equivalence and subtyping. Since this would be a fairly drastic extension to the
specification language, we have designed the PVS type system so as to avoid
any first-class treatment of types. It turns out that all the needed properties

2This is somewhat tricky in the case of π({y : T | a}) since in a[x/y], x has type µ(T),
whereas y has type T . As shown in Chapter 6, the type rules for conjunction are such
that τ(Γ, x : VAR µ(T))(π(T)(x) ∧ a) reduces to τ(Γ, x : VAR µ(T))(π(T)(x)) and τ(Γ, x :
VAR µ(T), π(T)(x))(a[x/y]) where the first conjunct is added to the context as a contextual
assumption. One can then show by induction that τ(Γ, x : VAR µ(T), π(T)(x))(a[x/y]) =
τ(Γ, y : VAR T)(a).

24 Chapter 3. Adding Subtypes

about types (such as equality and subtyping) can be obtained by generating
ordinary proof obligations rather than by explicitly proving theorems about
types.

We introduce below a metatheoretic operation that generates the proof
obligations needed to establish that two (maximal) types are equivalent. This
equivalence is denoted by ' and is applied only to maximal types and re-
turns a list of the proof obligations that must be proved. Note the invariant
in the definition below that the arguments to ' are always maximal. The
definition of ' makes use of the PVS equality predicate that will be intro-
duced later. A list of formulas is represented as a1, . . . , an. Given two such
lists a1, . . . , am and b1, . . . , bn, the concatenation of these two lists is written
as a1, . . . , am ; b1, . . . , bn.

Definition 13 (type equivalence proof obligations)

(s ' s) = TRUE

([A→B] ' [A′→B′]) = ((µ(A) ' µ(A′)); (π(A) = π(A′)); (B ' B′))3

([A1, A2] ' [B1, B2]) = ((A1 ' B1); (A2 ' B2))

(A ' B) = FALSE, otherwise

Example 3.3 (type equivalence) Building on the context given in Exam-
ple 3.1, if we have the following variants of nat and natinjection:

NAT : TYPE = {i : int | i ≤ 0 ⊃ i = 0}
NATinjection : TYPE = {f : [NAT→NAT] | ∀(i, j : NAT) : f(i) = f(j) ⊃ i = j}

we get

µ([natinjection→natinjection]) = [natinjection→[nat→int]]

µ([NATinjection→NATinjection]) = [NATinjection→[NAT→int]]

µ([natinjection→natinjection]) ' µ([NATinjection→NATinjection])

= (µ(natinjection) ' µ(NATinjection));
(π(natinjection) = π(NATinjection));
([nat→int] ' [NAT→int])

3The type correctness of the proof obligation (π(A) = π(A′)) depends on the prior proof
obligations µ(A) ' µ(A′).

25

(π(natinjection) = π(NATinjection))

= (λ(f : [nat→int]) : (λ(g : [nat→int]) : ∀(i : nat) : 0 ≤ g(i))(f)
∧ (∀(i, j : nat) : f(i) = f(j) ⊃ i = j)

=
λ(f : [NAT→int]) :

(λ(g : [NAT→int]) : ∀(i : NAT) : g(i) ≤ 0 ⊃ g(i) = 0)(f)
∧ (∀(i, j : NAT) : f(i) = f(j) ⊃ i = j)

)

([nat→int] ' [NAT→int])

= (int ' int);

(λ(i : int) : 0 ≤ i) = (λ(i : int) : i ≤ 0 ⊃ i = 0); (int ' int)

A basic question during typechecking is whether two types are compatible,
that is, have the same maximal supertype. Two types are said to be com-
patible if the type equivalence proof obligations on their respective maximal
supertypes are provable. The provability of a formula a under context Γ is
represented as `Γ a.

Definition 14 (compatible) Two types A and B are said to be compatible
in context Γ (in notation, (A ∼ B)Γ) if `Γ a, for each a in (µ(A) ' µ(B)).4

We now extend the definition of δ to the case of subtypes so that it leaves
the predicate unchanged but expands the definition of the supertype.

Definition 15 (expanded type with subtypes)

δ(Γ)({x : T | a}) = {x : δ(Γ)(T) | a}

We now extend the definition τ to the case of subtypes. Here we could force
τ to always return a maximal supertype but this is not done in Definition 16
since it would weaken the soundness theorem without significantly simplify-
ing the definition of the type rules. The typechecking of contexts has to be
modified to generate a nonemptiness proof obligation for the type of any con-
stant declaration. A constant of an empty type would lead to an inconsistent
context, and this would mean that constant declarations are not conservative
extensions. This modification to Definition 2 is not needed for soundness since
an inconsistent context makes soundness trivial. It is needed to show that

4The PVS proof rules are described in Chapter 7.

26 Chapter 3. Adding Subtypes

constant declarations and definitions are conservative extensions. Note that
with subtypes, the type rule for an application is modified to check that the
domain type of the function is compatible with the type of its argument, and
that the argument satisfies any constraints imposed by the domain type of the
function. The case of projection expressions is also not straightforward since
the argument type can be a subtype of a tuple type. In this case, we use the
direct supertype (see Definition 11) which must be a tuple type.

Definition 16 (type rules with subtypes)

τ()(Γ, c : T) = CONTEXT, if Γ(c) is undefined,

τ(Γ)(T) = TYPE,

τ()(Γ) = CONTEXT, and

`Γ (∃(x : T) : TRUE)

τ(Γ)({x : T | a}) = TYPE, if Γ(x) is undefined,

τ(Γ)(T) = TYPE, and τ(Γ, x : VAR T)(a) = bool

τ(Γ)(f a) = B, where µ0(τ(Γ)(f)) = [A→B],

τ(Γ)(a) = A′,

(A ∼ A′)Γ,

`Γ π(A)(a)

τ(Γ)(pi a) = Ai, where µ0(τ(Γ)(a)) = [A1, A2]

Example 3.4 (typechecking subtypes) Let Γ contain the above declara-
tions of int, nat, 0, ≤, and natinjection.

τ(Γ)({i : int | 0 ≤ i})
= TYPE

τ(Γ)((λ(f : natinjection) : f(0))(λ(i : nat) : i))

= δ(Γ)(nat), if

(natinjection ∼ [nat→nat])Γ,

`Γ ∀(j, k : nat) : (λ(i : nat) : i)(j) = (λ(i : nat) : i)(k) ⊃ j = k,

(int ∼ nat)Γ, and

`Γ 0 ≤ 0

27

Only one additional clause to Definition 3 is needed to capture the seman-
tics of predicate subtypes.

Definition 17 (meaning function with subtypes)

M(Γ | γ)({x : T | a})
= {y ∈M(Γ | γ)(T) | M(Γ, x : VAR T | γ{x← y})(a) = 1}

Example 3.5 (semantics of predicate subtypes) If we assign the usual
truth table interpretation to the Boolean function ⊃:

M(Γ | γ)({f : [bool→bool] | ∀(x : bool) : x ⊃ f(x)})
= {{〈0,0〉, 〈1,1〉}, {〈0,1〉, 〈1,1〉}}.

The following useful propositions are easily proved from the definitions
given above. Proposition 3.6 asserts that the maximal supertype of a type is
well typed. Proposition 3.7 asserts that the denotation of a type is a subset
of the denotation of its maximal supertype. Proposition 3.8 asserts that if all
the proof obligations in (A ' A′) are valid relative to a given assignment γ for
context Γ, then the denotations of A and A′ under γ are equal.

Proposition 3.6 If τ()(Γ) = CONTEXT and τ(Γ)(A) = TYPE, then τ(Γ)(µ(A)) =
TYPE.

Proposition 3.7 If τ()(Γ) = CONTEXT, τ(Γ)(A) = TYPE, and γ satisfies Γ,
then

1. M(Γ | γ)(A) ⊆M(Γ | γ)(µ(A)) and

2. M(Γ | γ)(A) ⊆M(Γ | γ)(µ0(A)).

Proposition 3.8 If A and A′ are maximal types in context Γ, i.e.,

1. τ()(Γ) = CONTEXT,

2. τ(Γ)(A) = τ(Γ)(A′) = TYPE,

3. µ(A) = A and µ(A′) = A′

and for each a in (A ' A′),

28 Chapter 3. Adding Subtypes

1. a ≡ TRUE, or

2. a ≡ (a1 = a2) and M(Γ | γ)(a1) =M(Γ | γ)(a2) holds,

then M(Γ | γ)(A) =M(Γ | γ)(A′).5

Proposition 3.9 If τ()(Γ) = CONTEXT and τ(Γ)(T) = TYPE, thenM(Γ | γ)(T) =
M(Γ | γ)({x : µ(T) | π(T)(x)}).

We can now examine the updated forms of the invariants given by The-
orems 1, 2, and 3. The proof of Theorem 1 remains straightforward. The
statement of Theorem 3 must now be strengthened to include soundness, that
is, if `Γ a and γ satisfies Γ, then M(Γ | γ)(a) = 1. For now, we assume
soundness (Theorem 8) since we have not yet presented the proof rules.

Theorem 4 (type soundness) If τ()(Γ) = CONTEXT, γ satisfies Γ, and τ(Γ)(A) =
TYPE then M(Γ | γ)(A) ∈ U .

Proof. There is only one new case to add to the induction proof of Theorem 2,
namely, when A ≡ {x : T | a}. In this case, by Definition 16, τ(Γ)(T) = TYPE,
so by the induction hypothesis, M(Γ | γ)(T) ∈ U . Since, by Definition 17,
M(Γ | γ)(A) ⊆M(Γ | γ)(T), we have M(Γ | γ)(A) ∈ U by Definition 1.

Theorem 5 (term soundness) If τ()(Γ) = CONTEXT, γ satisfies Γ, and τ(Γ)(a) =
A then M(Γ | γ)(a) ∈M(Γ | γ)(A).

Proof. There are two affected cases in the proof from that of Theorem 3,
namely, those of application and projection. The case of projection expressions
is straightforward given Proposition 3.7.

When a ≡ (f b), by Definition 16, we have that τ(Γ)(f) = [B→A] and
τ(Γ)(b) = B′. Let X be M(Γ | γ)(B), X ′ be M(Γ | γ)(B′), and Y be
M(Γ | γ)(A). Then by Definition 3, M(Γ | γ)([B→A]) = Y X . By the induc-
tion hypotheses,M(Γ | γ)(f) ∈ Y X andM(Γ | γ)(b) ∈ X ′. By Definition 16,
soundness of the proof rules (Theorem 8), and Propositions 3.7 and 3.8, there
is a maximal supertype µ(B) of both B and B′ such that X and X ′ are both
subsets of M(Γ | γ)(µ(B)). Since, by Definition 16, `Γ π(B)(b), and by
Proposition 3.9, M(Γ | γ)(B) = M(Γ | γ)({x : µ(B) | π(B)(x)}), we have
M(Γ | γ)(b) ∈ M(Γ | γ)(B), and hence by Definition 3, M(Γ | γ)((f b)) ∈
M(Γ | γ)(A).

5We remind the reader that the formulas a in (A ' A′) are equalities, but we have not
yet formally introduced equality into the language.

3.1. Summary 29

3.1 Summary

PVS features a form of subtyping where it is possible to form the subtype
of a type satisfying a given predicate on the type. This kind of subtyping
introduces several delicate semantic issues into PVS. A term can now have
several types since, for example, the term corresponding to the number 2 can
be a prime number, an even number, a natural number, an integer, a rational
number, or a real number. When the expected type is a subtype, the canonical
type of the actual term must be compatible with the expected type, that is,
the two maximal supertypes must be equivalent and the actual term must sat-
isfy any subtype constraints imposed by the expected type. We have defined
the notions of maximal supertype, subtype constraints, type equivalence, and
compatibility. These notions are used to define the type rules and semantics
of the simply typed fragment of PVS extended with subtypes. Note that both
type equivalence (and hence, compatibility) and type correctness are undecid-
able. Proof obligations generated during typechecking are the only source of
such undecidability. The modularization of the type system into a decidable
part consisting of the simply typed fragment, and the proof obligations gener-
ated by subtyping, is perhaps the most significant design consideration in the
PVS language.

Chapter 4

Dependent Types

The PVS language fragment described thus far is already quite expressive. It
employs definitional equivalence between types and contains predicate sub-
types. It is undecidable whether an expression in this fragment is type-correct
because of the proof obligations that arise with respect to predicate subtypes
and type equivalence. The next step is the addition of type dependencies
between the components of a type. This extension considerably enhances the
utility of this type system. It is also a natural extension given predicate subtyp-
ing which already allows types that depend on free variables in the predicates.
With dependent typing, we can make the type of one component of a prod-
uct depend on the value of another component, or the type of the range of a
function vary according to its argument value.

A dependent product type is written as [x : A,B]. A dependent function
type is written as [x : A→B]. Any product or function type can be transformed
into a dependent type by inserting dummy type bindings. Conversely, any
dummy type bindings that do not actually bind any variable occurrences can
be removed. The type rules and semantics below will assume that all product
and function types are presented as dependent types.

Example 4.1 (dependent types)

[i : nat, {j : nat | j ≤ i}],
[i : nat, [{j : nat | j ≤ i}→bool]],
[i : int→{j : int | i ≤ j}].

Before we treat dependent types, we update the definitions of the set of
free variables and substitution to account for the fact that with subtyping and

30

31

dependent typing, both free and bound variables can occur in terms and types.
This is needed for the next step where we try to remove type dependencies by
substituting a term into a dependent type.

Definition 18 (free variables for types)

FV (Γ)([x : A→B]) = FV (Γ)(A) ∪ (FV (Γ, x : VAR A)(B)− {x})
FV (Γ)([x : A,B]) = FV (Γ)(A) ∪ (FV (Γ, x : VAR A)(B)− {x})

FV (Γ)({x : A | a}) = FV (Γ)(A) ∪ (FV (Γ, x : VAR A)(a)− {x})

Definition 19 (substitution for types)

[x : A→B][a1/x1, . . . , an/xn]

= [y : A[a1/x1, . . . , an/xn]→B[y/x, a1/xn, . . . , an/xn]]

[x : A,B][a1/x1, . . . , an/xn]

= [y : A[a1/x1, . . . , an/xn], B[y/x, a1/x1, . . . , an/xn]]

{x : A | a}[a1/xn, . . . , an/xn]

= {y : A[a1/x1, . . . , an/xn] | a[y/x, a1/xn, . . . , an/xn]}

where y is a fresh variable.

The definition of µ has to be modified slightly for dependent types. The
definition is first extended to type bindings, µ(x : T) = x : µ(T). The def-
inition for the case of dependent function types is unchanged so that µ([x :
A→B]) = [x : A→µ(B)]. The definition for the product case is more delicate
since the definition µ([x : A,B]) = [x : µ(A), µ(B)] results in a loss of type
information regarding the occurrences of x in B.1 To ensure that type informa-
tion regarding x is retained, we define a new operation T\a which constrains
the subtype assertions in type T with an additional assertion a.

Definition 20 (Adding subtype constraints)

s\a = s

{x : T |b}\a = {x : T |a ∧ b}
[A→B]\a = [A\a→B\a]

[A,B]\a = [A\a,B\a]

1Doug Howe brought this problem to our attention.

32 Chapter 4. Dependent Types

We can now define the maximal supertype operation for dependent tuple
types.

Definition 21 (Maximal supertype for dependent product types)

µ([x : A,B]) = [x : µ(A), B\π(A)(x)]

The definition of π for a dependent function type [y : A→B] is slightly
different from that of an ordinary function type since π(B) can contain free
occurrences of the variable y. For example, π([i : int→{j : int | i ≤ j}]) must
be λ(f : [i : int→int]) : (∀(i : int) : i ≤ f(i)). The definition for dependent
tuples remains essentially unchanged from that of ordinary products.

Definition 22 (constraint predicates for dependent types)

π([y : A→B]) = (λ(x : [y : A→µ(B)]) : (∀(y : A) : π(B)(x(y))))

π([y : A,B]) = (λ(x : [y : µ(A), µ(B)\π(A)(y)]) :

π(A)(p1 x) ∧ π(B)(p2 x)[(p1 x)/y])

Example 4.2 (dependent type predicates)

µ([i : int→{j : int | i ≤ j}]) = [i : int→int]

π([i : int→{j : int | i ≤ j}]) = λ(f : [i : int→int]) :

∀(i : int) : (λ(j : int) : i ≤ j)(f(i))

The definition of ' must also be massaged slightly for dependent types.
Recall that ' checks whether two maximal types are equivalent by generating
proof obligations as needed. This is the basic operation for checking whether
the expected type of an expression is compatible with its actual type. The
subtlety now is that the expected type might be a dependent type where the
actual type is not. Consider the case of the pair 〈5, (λ(x : {j : nat | j ≤ 5}) :
x)〉 whose type would be computed by τ as [i : nat, [{j : nat | j ≤ 5}→{j :
nat | j ≤ 5}]] where the expected type might be [i : nat, [{j : nat | j ≤ i}→{j :
nat | j ≤ i}]]. To cope with this, we will allow the option of two maximal
types, say A and B, to be compared using ' in the context of an expression

33

a. This is indicated by the notation (A ' B)/a. Note that (A ' B)/a
is sensible only when A and B are maximal types. The missing cases in
Definition 13 are included in Definition 23. For a list of formulas a1, . . . , an,
let (∀(x : T) : a1, . . . , an) represent the list (∀(x : T) : a1), . . . , (∀(x : T) : an).2

Definition 23 (type equivalence for dependent types)

(s ' s)/a = TRUE

([x : A→B] ' [x′ : A′→B′]) = (µ(A) ' µ(A′));

(π(A) = π(A′));

(∀(x : A) : (B ' B′[x/x′]))

([x : A→B] ' [x′ : A′→B′])/a = (µ(A) ' µ(A′));

(π(A) = π(A′));

(∀(x : A) : (B ' B′[x/x′])/a(x))

([x : A1, A2] ' [y : B1, B2]) = (A1 ' B1);

(∀(x : A1) : (A2 ' B2[x/y]))

([x : A1, A2] ' [y : B1, B2])/a = (A1 ' B1)/(p1 a);

(A2[(p1 a)/x] ' B2[(p1 a)/y])/(p2 a)

(A ' B)/a = FALSE, otherwise.

As with (A ∼ B)Γ, the notation (A
a∼ B)Γ indicates that all the proof obliga-

tions a′ in (µ(A) ' µ(B))/a are provable, that is, `Γ a
′.

With dependent types, the type rules must be modified so as to augment
the context suitably to account for any dependencies. We will give the defini-
tions only for dependent type constructions.

Definition 24 (type rules with dependent types)

τ(Γ)([x : A,B]) = TYPE, if Γ(x) is undefined,

τ(Γ)(A) = TYPE, and

τ(Γ, x : VAR A)(B) = TYPE

τ(Γ)([x : A→B]) = TYPE, if Γ(x) is undefined,

τ(Γ)(A) = TYPE, and

τ(Γ, x : VAR A)(B) = TYPE

2Note that the type-correctness of the proof obligation (π(A) = π(A′)) in Definition 23
depends on the prior proof obligations µ(A) ' µ(A′).

34 Chapter 4. Dependent Types

τ(Γ)(f a) = B′, where µ0(τ(Γ)(f)) = [x : A→B],

τ(Γ)(a) = A′,

(A
a∼ A′)Γ,

B′ is B[a/x],

`Γ π(A)(a)

τ(Γ)(λ(x : A) : a) = [x : A→B], where

B = τ(Γ, x : VAR A)(a)

τ(Γ)(p1 a) = A1, where µ0(τ(Γ)(a)) = [x : A1, A2]

τ(Γ)(p2 a) = A2[(p1 a)/x], where µ0(τ(Γ)(a)) = [x : A1, A2]

Example 4.3 (dependent typing)

τ(Γ)([x : bool, {y : bool | x ⊃ y}]) = TYPE

τ(Γ)([x : bool→{y : bool | x ⊃ y}]) = TYPE

Before we can assign meanings to dependent types, we must augment our def-
inition of the universe U to contain sets corresponding to these constructions.
If F is a function with domain set X and a range Y , which is a set of sets, we
can define ΣF to be the set {〈x, y〉 | x ∈ dom(F), y ∈ F (x)} and ΠF to be the
set {f | (∀x ∈ dom(F) : f(x) ∈ F (x))}. Note that ΠF ⊆

⋃
X∈ΣF ℘(X) but we

include ΠF in the universe U defined below for simplicity. We can drop X×Y
and XY from the universe definition since X×Y can be obtained from ΣF by
defining an F with domain X that always returns Y , and similarly, XY can
be obtained by ΠF where F is defined to with domain Y to always return X.
The universe U can then be redefined as below.

Definition 25 (type universe with dependent types)

U0 = {2,R}
Ui+1 = Ui

∪
⋃
X∈Ui

℘(X)

∪ {ΣF | F ∈ Wi}

35

∪ {ΠF | F ∈ Wi}
Wi =

⋃
X∈Ui

UX
i

Uω =
⋃
i∈ω

Ui

U = Uω

One very important consequence of the above extension of the universe is
that all type dependencies must be bounded in the sense that if B is a type
expression with a single free variable x of type A, then it must be the case that
for any set [[A]] representing A, there is a bound n such that for any z in [[A]],
the meaning of B under {x← z} must be in Un. This property is easily proved
by induction on the structure of a PVS type since the parameter x can appear
only in the predicate part of a subtype where the rank of the meaning of the
resulting type cannot vary with the value of x. In particular, there is no way
to define a type constructor T n in PVS that returns the n-tuple [T, [. . . , T]︸ ︷︷ ︸

n

]

for a given n since this would entail an unbounded dependency. If unbounded
type dependencies were allowed in PVS, one can construct a dependent type
such as [n : nat→T n] whose representation is not in U as defined above.

The meaning function for dependent types is obtained by adding the cases
corresponding to dependent product and function types. All the other cases are
unchanged from Definition 17. Note that the semantic definition for dependent
types is equivalent to the nondependent one when there are no dependencies.

Definition 26 (meaning function with dependent types)

M(Γ | γ)([x : A,B]) = ΣF, where

F maps z ∈M(Γ | γ)(A) to

M(Γ, x : VAR A | γ{x← z})(B)

M(Γ | γ)([x : A→B]) = ΠF, where

F maps z ∈M(Γ | γ)(A) to

M(Γ, x : VAR A | γ{x← z})(B)

36 Chapter 4. Dependent Types

Example 4.4 (meaning function with dependent types)

M(Γ | γ)([x : bool, {y : bool | x ⊃ y}]) = {〈0,0〉, 〈0,1〉, 〈1,1〉}
M(Γ | γ)([x : bool→{y : bool | x ⊃ y}]) = {{〈0,0〉, 〈1,1〉},

{〈0,1〉, 〈1,1〉}}

We now need to show that the extensions corresponding to dependent
types preserve the properties in Theorems 4 and 5, namely,M(Γ | γ)(T) ∈ U
and M(Γ | γ)(a) ∈ M(Γ | γ)(τ(Γ)(a)). For the former, we prove a stronger
theorem that incorporates the rank-boundedness of dependent types.

Theorem 6 (rank bounded type semantics) If B is a pretype, x1, . . . , xn
is a list of symbols, A1, . . . , An is a list of pretypes such that

1. τ()(Γ, x1 : VAR A1, . . . , xn : VAR An) = CONTEXT,

2. τ(Γ, x1 : VAR A1, . . . , xn : VAR An)(B) = TYPE, and

3. γ is an assignment satisfying Γ,

then there is an i such that for any list of values z1, . . . , zn where γ{x1 ←
z1} . . . {xn ← zn} is a satisfying assignment for Γ, x1 : VAR A1, . . . , xn : VAR An,
we have

M(Γ, x1 : VAR A1, . . . , xn : VAR An | γ{x1 ← z1} . . . {xn ← zn})(B) ∈ Ui.

Proof. The proof is by structural induction on the pretype B. Let Γ′ denote
Γ, x1 : VAR A1, . . . , xn : VAR An, γ′ denote γ{x1 ← z1} . . . {xn ← zn}, and [[C]]
denote M(Γ′ | γ′)(C).

1. B ≡ s: Since [[B]] is just γ(B) by Definition 3, we have that there is an
i such that [[B]] ∈ Ui regardless of the choice of values z1, . . . , zn.

2. B ≡ {y : T | a}: By the induction hypothesis, we know that for some
j, it is always the case that [[T]] ∈ Uj. By Definition 17, we have that
[[B]] ⊆ [[T]] so if we let i = j + 1, then by Definition 25, it is always the
case that [[B]] ∈ Ui.

37

3. B ≡ [y : C→D]: By Definition 24, Γ′(y) is undefined, τ(Γ′)(C) =
TYPE, τ()(Γ′, y : VAR C) = CONTEXT, and τ(Γ′, y : VAR C)(D) = TYPE.
By the induction hypothesis, for some j, it is always the case that
M(Γ′ | γ′)(C) ∈ Uj, and for some k, it is always the case that for any
satisfying assignment γ′{y ← w} for Γ′, y : VAR C, we have M(Γ′, y :
VAR C | γ′{y ← w})(D) ∈ Uk. Then the function F mapping w in
M(Γ′)(C) to M(Γ′, y : VAR C | γ′{y ← w})(D) is an element of Wj+k.
Letting i be j + k + 1, we have by Definition 26 that M(Γ′ | γ′)(B) is
ΠF and is hence an element of Ui by Definition 25.

4. B ≡ [y : C,D]: Similar to the previous case.

By choosing n to be 0, the previous theorem yields the result that when
τ(Γ)(B) = TYPE, M(Γ | γ)(B) ∈ U .

We next need to establish that for any preterm a, if τ(Γ)(a) = A, then
M(Γ | γ)(a) ∈ M(Γ | γ)(A). The first step in this direction is the proof of
the substitution lemma below.

Proposition 4.5 If τ()(Γ) = τ()(Γ′) = CONTEXT where for each s, Γ(s) is
defined if and only if Γ′(s) is defined, and γ is an assignment satisfying both
Γ and Γ′, then

1. If Γ(s) = Γ′(s) (i.e., they are equal when either Γ(s) or Γ′(s) is defined),
then

(a) τ(Γ)(a) = τ(Γ′)(a), for any preterm a.

(b) τ(Γ)(A) = τ(Γ′)(A), for any pretype A.

2. M(Γ | γ)(A) =M(Γ′ | γ)(A), when τ(Γ)(A) = TYPE.

3. M(Γ | γ)(a) = M(Γ′ | γ)(a), for any preterm a such that τ(Γ)(a) is
defined.

Lemma 1 (substitution lemma) If τ()(Γ, x : VAR A) = CONTEXT, τ(Γ)(a) =
A, then

1. If τ(Γ, x : VAR A)(b) = B, then
M(Γ | γ)(b[a/x]) =M(Γ, x : VAR A | γ{x←M(Γ | γ)(a)})(b).

2. If τ(Γ, x : VAR A)(C) = TYPE, then
M(Γ | γ)(C[a/x]) =M(Γ, x : VAR A | γ{x←M(Γ | γ)(a)})(C).

38 Chapter 4. Dependent Types

Proof. The proof is by simultaneous structural induction on the preterm b
and the pretype C. The following cases deal with the preterm b.

1. b ≡ s: If s ≡ x, then by Definition 26, the left-hand sideM(Γ | γ)(b[a/x])
is M(Γ | γ)(a), and the right-hand side M(Γ, x : VAR A | γ{x ←
M(Γ | γ)(a)})(b) is also M(Γ | γ)(a).

If s 6≡ x, then by Definition 26, the left-hand side and the right-hand
side are both equal to γ(s).

2. b ≡ (λ(y : C) : d): Since C can contain free occurrences of x, we
have by the induction hypothesis that M(Γ | γ)(C[a/x]) = M(Γ, x :
VAR A | γ{x←M(Γ | γ)(a)})(C). Also,M(Γ | γ)((λ(y : C) : d)[a/x]) is
equal to the set of ordered pairs 〈v, z〉 such that v ∈ M(Γ | γ)(C[a/x])
and z =M(Γ, y : VAR C[a/x] | γ{y ← v})(d[a/x]).

By the induction hypothesis,M(Γ, y : VAR C[a/x] | γ{y ← v})(d[a/x]) =
M(Γ, y : VAR C[a/x], x : VAR A | γ{y ← v}{x←M(Γ | γ)(a)})(d). Since
x does not occur free in C[a/x], by Proposition 4.5 we can exchange the
occurrences of y and x so that M(Γ, y : VAR C[a/x], x : VAR A | γ{y ←
v}{x ← M(Γ | γ)(a)})(d) = M(Γ, x : VAR A, y : VAR C[a/x] | γ{x ←
M(Γ | γ)(a)}{y ← v})(d).

By Definition 26, the right-hand side is the set of ordered pairs of the
form 〈v, z〉 such that v ∈M(Γ, x : VAR A | γ{x←M(Γ | γ)(a)})(C) and
z = M(Γ, x : VAR A, y : VAR C | γ{x ←M(Γ | γ)(a)}{y ← v})(d). By
Proposition 4.5 and the induction hypothesis, we know that M(Γ, x :
VAR A, y : VAR C | γ{x ← M(Γ | γ)(a)}{y ← v})(d) = M(Γ, x :
VAR A, y : VAR C[a/x] | γ{x ←M(Γ | γ)(a)}{y ← v})(d), and hence it
follows that the two sets of ordered pairs are equal.

3. b ≡ (f c): In this case, b[a/x] ≡ (f [a/x] c[a/x]) and the conclusion
follows easily from the induction hypothesis and Definition 26.

4. b ≡ (b1, b2): The conclusion follows easily from Definitions 6, 26, and the
induction hypotheses.

5. b ≡ (pi c): This case is also straightforward since b[a/x] ≡ (pi c[a/x]),
and by the induction hypothesis,M(Γ, x : VAR a | γ{x←M(Γ | γ)(a)})(c) =
M(Γ | γ)(c[a/x]).

The remaining cases deal with the pretype C.

1. C ≡ s: This case is trivial since by Definition 6, C[a/x] ≡ C and the
left-hand and right-hand sides both reduce to γ(C).

39

2. C ≡ {y : T | d}: The argument here follows along the lines of the
b ≡ (λ(x : C) : D) case above. By the induction hypotheses, we know
that

M(Γ, x : VAR A | γ{x←M(Γ | γ)(a)})(T)

= M(Γ | γ)(T [a/x])

M(Γ, y : VAR T [a/x], x : VAR A | γ{y ← z}{x←M(Γ | γ)(a)})(d)

= M(Γ, y : VAR T [a/x] | γ{y ← z})(d[a/x]),

for any z ∈M(Γ | γ)(T [a/x])

The conclusion follows from Proposition 4.5 and Definition 26.

3. C ≡ [y : C1→C2]: The argument here is similar to that of the previous
case. Essentially, by the induction hypothesis and Proposition 4.5, the
function mapping z ∈ M(Γ, x : VAR A | γ{x ← M(Γ | γ)(a))(C1) to
M(Γ, y : VAR C1[a/x], x : VAR A | γ{y ← z}{x ←M(Γ | γ)(a)})(C2) is
the same as the function mapping z ∈ M(Γ | γ)(C1[a/x]) to M(Γ, y :
VAR C1[a/x] | γ{y ← z})(C2[a/x]).

4. C ≡ [y : C1, C2]: Similar to the previous case.

Proposition 4.6 is stated below without proof. It asserts the semantic
equivalence with respect to term a of types A and B when (A

a∼ B)Γ holds.
Note that its correctness depends on the soundness of the proof rules.

Proposition 4.6 If τ()(Γ) = CONTEXT, a is a preterm such that τ(Γ)(a) =
B, and (A

a∼ B)Γ, then M(Γ | γ)(a) ∈ M(Γ | γ)(A) iff M(Γ | γ)(a) ∈
M(Γ | γ)(B).

Theorem 7 If τ()(Γ) = CONTEXT, γ is an assignment satisfying Γ, and a is
a preterm such that τ(Γ)(a) = A, then M(Γ | γ)(a) ∈M(Γ | γ)(A).

Proof. The proof is by induction on the structure of the preterm a.

1. a ≡ s: Then by Definition 26, M(Γ | γ)(a) = γ(a), and by Definition 4,
we have that γ(a) ∈M(Γ | γ)(A).

2. a ≡ (λ(x : C) : b): By Definition 24, we have τ(Γ)(a) = A = [x :
C→τ(Γ, x : VAR C)(b)]. Let B label τ(Γ, x : VAR C)(b). We know that

40 Chapter 4. Dependent Types

M(Γ | γ)(A) is of the form ΠF where F maps z ∈ M(Γ | γ)(C) to
M(Γ, x : VAR C | γ{x← z})(B).

By the induction hypothesis on b, we know that for any z ∈M(Γ | γ)(C),
M(Γ, x : VAR C | γ{x← z})(b) ∈M(Γ, x : VAR C | γ{x← z})(B). Since
by Definition 26, M(Γ | γ)(a) is a function mapping z ∈ M(Γ | γ)(C)
to M(Γ, x : VAR C | γ{x ← z})(b), we have M(Γ | γ)(a) ∈ ΠF by the
definition of Π.

3. a ≡ (f b): By Definition 24, we have that τ(Γ)(f) = [x : B→A′],
τ(Γ)(b) = B′, (B

a∼ B′)Γ, A ≡ A′[a/x], and `Γ π(B)(b). We know by
the induction hypothesis thatM(Γ | γ)(f) ∈M(Γ | γ)([x : B→A′]) and
M(Γ | γ)(b) ∈M(Γ | γ)(B′). By Propositions 4.6 and 3.9,M(Γ | γ)(b) ∈
M(Γ | γ)(µ(B)). We therefore have by Proposition 3.9 thatM(Γ | γ)(b) ∈
M(Γ | γ)(B). By Definition 26,M(Γ | γ)(a) ∈M(Γ, x : VAR B | γ{x←
M(Γ | γ)(b)})(A′), and hence by Lemma 1 it follows thatM(Γ | γ)(a) ∈
M(Γ | γ)(A′[b/x]).

4. a ≡ (a1, a2): The conclusion follows easily from the induction hypothesis
and Definition 24.

5. a ≡ (pi b): The conclusion follows easily from Proposition 3.9, the in-
duction hypothesis, and Definition 24. The (p2 b) case also employs
Lemma 1.

4.1 Summary

Dependent typing is a significant enhancement to PVS since it adds an im-
portant degree of flexibility and precision to the type system. Notions such
as subtype constraints and type equivalence that were introduced for subtyp-
ing can be extended for the case of dependent types. The semantic universe
must be extended to include additional sets to accommodate the semantics
of dependent types. The rank-boundedness of type dependencies is crucial
in demonstrating that dependent types can be interpreted in this extended
semantic universe.

Chapter 5

Theories and Parametric
Theories

The next extension of the PVS language introduces theories and parametric
theories. The theory construct of PVS provides a way of packaging together
a related collection of declarations. Theories can be parametric in individual
or type parameters. Thus, PVS permits polymorphism or type parametricity
only at the theory level rather than at the declaration level as in HOL [GM93].
We first consider PVS theories without parameters. The main change now is
that contexts are no longer simple and can contain theory declarations as well.
A theory declaration has the form m : THEORY = ∆, where ∆ is a simple
context with no variable or theory declarations. If Γ(m) is the declaration
m : THEORY = ∆, then kind(Γ(m)) = THEORY, and definition(Γ(m)) = ∆.
Correspondingly, constants and type names are no longer just symbols but
can be compound names of the form m.s where m is a symbol naming a
theory and s is a symbol corresponding to the constant or type name.

5.1 Theories without Parameters

To define the type rules for theories, we first modify the definition of τ for
simple contexts so that the context argument is not always empty. Here ∆; Γ
represents the concatenation of contexts.

Definition 27 (type rules for contexts)

τ(Θ)({}) = CONTEXT

τ(Θ)(Γ, s : TYPE = T) = CONTEXT, if Γ(s) and Θ(s) are undefined,

τ(Θ)(Γ) = CONTEXT, and

41

42 Chapter 5. Theories and Parametric Theories

τ(Θ; Γ)(T) = TYPE

τ(Θ)(Γ, c : T) = CONTEXT, if Γ(c) and Θ(c) are undefined,

τ(Θ)(Γ) = CONTEXT, and

τ(Θ; Γ)(T) = TYPE

τ(Θ)(Γ, x : VAR T) = CONTEXT, if Γ(x) and Θ(x) are undefined,

τ(Θ)(Γ) = CONTEXT, and

τ(Θ; Γ)(T) = TYPE

Example 5.1 (type rules for contexts)

τ(Ω)(real : TYPE, 0 : real,≤: [[real, real]→bool]) = CONTEXT

The following rule handles theory declarations.

Definition 28 (type rule for contexts with theory declarations)

τ(Θ)(Γ,m : THEORY = ∆) = CONTEXT if Θ(m),Γ(m) are undefined

∆ only has constant and type declarations,

τ(Θ; Γ)(∆) = CONTEXT,

τ(Θ)(Γ) = CONTEXT

Example 5.2 (contexts with theory declarations)

τ(Ω)(reals : THEORY = (real : TYPE, 0 : real,≤: [[real, real]→bool]))

= CONTEXT

Any reference to a type name or a constant s declared in a theory m
outside of this theory must be prefixed by the theory name, as in m.s. Note
that references to a type name or constant that is declared in the same theory
should not be given a theory prefix. Before we can give the type rules, we must
update the definition of the type expansion operation δ to prefix symbols with
their theory names. Let Γ(m)(s) abbreviate definition(Γ(m))(s), which is the

5.1. Theories without Parameters 43

declaration of the symbol s in the definition of the theory m. Let η(Γ,m)(a)
be the result of prefixing every unprefixed type or constant symbol in a by m,
where a is either an individual or type expression. We omit the definition of
η since it is straightforward.

We modify the definition of δ in Definition 7 with the following clauses.

Definition 29 (expanded type for prefixed symbols)

δ(Γ)(m.s) = δ(Γ)(η(Γ,m)(definition(Γ(m)(s)))), if

definition(Γ(m)(s)) is nonempty.

δ(Γ)(m.s) = m.s if definition(Γ(m)(s)) is empty.

Example 5.3 (expanded type for prefixed symbols) Let Ω′′ be the con-
text

Ω, reals : THEORY = (real : TYPE,
0 : real,
≤: [[real, real]→bool],
nonneg real : TYPE = {x : real | ≤ (0, x)},
1 : nonneg real)

δ(Ω′′)(reals.nonneg real) = {x : reals.real | reals.≤ (reals.0, x)}

The type rules for prefixed symbols are given below.

Definition 30 (type rules for prefixed symbols)

τ(Γ)(m.s) = TYPE, if kind(Γ(m)) = THEORY and

kind(Γ(m)(s)) = TYPE

τ(Γ)(m.s) = δ(Γ)(η(Γ,m)(type(Γ(m)(s)))),

if kind(Γ(m)) = THEORY and

kind(Γ(m)(s)) = CONSTANT

44 Chapter 5. Theories and Parametric Theories

Example 5.4 (type rules for prefixed symbols)

τ(Ω′′)(reals.nonneg real) = TYPE

τ(Ω′′)(reals.1) = {x : reals.real | reals.≤ (reals.0, x)}

The operations π, and µ remain unchanged. An assignment γ now maps a
theory name m to an assignment γ(m).

Definition 31 (meaning function for prefixed symbols)

M(Γ | γ)(m.s) = γ(m)(s)

Example 5.5 (meaning function for prefixed symbols) Let ω′′ be a sat-
isfying assignment for Ω′′ of the form

. . . {reals← {real← R}{0← 0} . . .}

M(Ω′′ | ω′′)(reals.real) = R

M(Ω′′ | ω′′)(reals.0) = 0

Definition 32 (satisfaction for contexts with theories) An assignment γ
satisfies a context Γ if in addition to the constraints stated in Definition 9, γ
maps every theory m declared in Γ to a satisfying assignment for the body of
the theory given by definition(Γ(m)), that is for each declared symbol s in m:

1. If kind(Γ(m)(s)) = TYPE, then γ(m)(s) ∈ U .

2. If kind(Γ(m)(s)) = CONSTANT, then γ(m)(s) ∈M(Γ | γ)(τ(Γ)(m.s)).

3. If definition(Γ(m)(s)) is nonempty, then

γ(m)(s) =M(Γ|γ)(η(Γ,m)(definition(Γ(m)(s)))).

5.2. Constant Definitions 45

5.2 Constant Definitions

We first extend the subset of PVS described so far to include constant def-
initions in a manner similar to type definitions. This extension is used in
formalizing the semantics of parametric theories. The syntax for a constant
definition is c : T = a where definition(Γ(c)) is a. These definitions are ex-
plicit, that is, not recursive. With this extension, the type rule for constant
declarations in contexts changes from that of Definition 16.

Definition 33 (type rule with constant definitions)

τ(Θ)(Γ, c : T = a) = T, if Γ(c) is undefined,

Θ(c) is undefined,

τ(Θ)(Γ) = CONTEXT,

τ(Θ; Γ)(a) = T ′,

(T ∼ T ′)Γ,

`Γ π(T)(a)

The notion of satisfaction must be extended from that of Definition 32 to
ensure that an assignment for a defined constant satisfies the definition.

Definition 34 (satisfaction with constant definitions) An assignment γ
satisfies a context Γ if in addition to the conditions in Definition 32, when-
ever kind(Γ(s)) = CONSTANT and definition(Γ(s)) is nonempty, then γ(s) =
M(Γ | γ)(definition(Γ(s))).

5.3 Parametric Theories

The extension to parametric theories is obtained by permitting theories to be
declared as m[Π] : THEORY = ∆, where Π is a context listing the parameters
and ∆ is the body of the theory. If the above declaration of m occurs in
context Γ, then Π is formals(Γ(m)), and ∆ is definition(Γ(m)). For nonpara-
metric theories, formals(Γ(m)) is empty. Types or constants declared in a
parametric theory are referenced outside the theory as m[σ].s, where σ is a
list of actual parameters consisting of types and terms. The type rule from
the nonparametric case must be modified to check the parameters.

46 Chapter 5. Theories and Parametric Theories

Definition 35 (type rule for contexts with parametric theories)

τ(Θ)(Γ,m[Π] : THEORY = ∆)

= CONTEXT if Γ(m),Θ(m),Π(m) are undefined

τ(Θ)(Γ) = CONTEXT

τ(Θ; Γ)(Π) = CONTEXT,

Π has only constant and

type declarations without definitions,

τ(Θ; Γ; Π)(∆) = CONTEXT

∆ only has type and constant declarations

The type rules for prefixed symbols are given below. The notation Π = σ,
where Π is of the form s1 : α1, . . . , sn : αn, and σ is of the form σ1, . . . , σn,
is short for the context s1 : α1 = σ1, . . . , sn : αn = σn. The definition
of η is now extended to substitute actual theory parameters for formals, so
that η(Γ,m[σ])(a) prefixes every unprefixed symbol s in a that is declared
in definition(Γ(m)) by m[σ], and replaces any si in a that is declared in
formals(Γ(m)) by the corresponding σi in σ.

Definition 36 (type rules for prefixed names with actuals) Let Π be formals(Γ(m)).

τ(Γ)(m[σ].s) = TYPE, if

kind(Γ(m)) = THEORY

kind(Γ(m))(s) = TYPE and

τ(Γ)(Π = σ) = CONTEXT

τ(Γ)(m[σ].s) = δ(Γ)((η(Γ,m[σ])(type(Γ(m)(s)))),

if kind(Γ(m)) = THEORY

kind(Γ(m)(s)) = CONSTANT and

τ(Γ)(Π = σ) = CONTEXT

Definition 37 (type expansion with parametric theories)

δ(Γ)(m[σ].s) = δ(Γ)((η(Γ,m[σ])(definition(Γ(m)(s))))), if

definition(Γ(m)(s)) is nonempty.

δ(Γ)(m[σ].s) = m[σ].s, if definition(Γ(m)(s)) is empty.

5.3. Parametric Theories 47

The definition of an assignment for a context with parametric theories
is a bit complicated. In the nonparametric case, γ(m) simply returns an
assignment of values for the types and constants declared in the theory m.
For the case of parametric theories m, γ(m) returns a function that maps the
meaning of the given actuals σ to an assignment γ(m)(M(Γ | γ)(σ)) for the
types and constants declared in the theorym. There is an important restriction
that γ(m) must be rank-preserving, that is, if $ and $′ are assignments for Π
so that for each i where Πi is a type parameter, the rank of $(Πi) equals the
rank of $′(Πi), then the ranks of γ(m)($)(s) and γ(m)($′)(s) must be the
same for each type symbol s declared in m.

It is also important to observe that the semantics of parametric theories
makes use of the axiom of choice since the assignment corresponding to a the-
ory m of the form m[t : TYPE] : THEORY = {c : t} is essentially a choice function.

Let γ{Π ← $} represent the assignment such that γ{Π ← $}(s) = $(s)
for s in the domain of the context Π, and γ(s), otherwise. The meaning of
symbols of the form m[σ].s can then be defined as below.

Definition 38 (meaning function for prefixed symbols with actuals)

M(Γ | γ)(m[σ].s)

= M(Γ; Π; ∆ | γ{Π← $}{∆← γ(m)($)})(s), where

Π = formals(Γ(m))

∆ = definition(Γ(m))

$(r) =M(Γ | γ)((Π = σ)(r)), for r ∈ Π

The definition of a satisfying assignment given in Definition 32 also must
be strengthened. Let Π be the formal parameters to theory m in context Γ;
then, an assignment $ is said to be satisfying parameter assignment for Π
under the assignment γ to Γ iff γ{Π← $} is a satisfying assignment for Π.

Definition 39 (satisfaction for contexts with parametric theories) An
assignment γ satisfies a context Γ if in addition to the constraints stated in
Definition 32, γ maps every parametric theory m declared in Γ with parameters
Π and definition ∆, to a function that maps any satisfying parameter assign-
ment $ for the theory parameters Π (namely, formals(Γ(m))) to a satisfying
assignment γ{Π ← $}{∆ ← γ(m)($)} for ∆ (given by definition(Γ(m))).

48 Chapter 5. Theories and Parametric Theories

5.4 Summary

Theories are used to package related declarations together. Parametric the-
ories can be used to package together declarations that are generic in type
and individual parameters. The type rules for contexts must be extended to
accommodate the theories. The type rules for simple (nonparametric) theories
are straightforward given this extension. The operation of expanding a type
using type definitions must be enhanced so that symbols declared in a theory
are prefixed with their theory name when referenced outside the theory. As-
signments now have the same nested structure as contexts, and the semantic
definition is easily extended to handle prefixed symbols. Parametric theories
are more complex. The theory prefixes now contain actual parameters that
have to be typechecked relative to the expected formal parameters. The as-
signments corresponding to parametric theories are functions that map given
assignments for the formals to assignments for the declarations within a the-
ory. Such a mapping must be constrained to be rank-preserving. Parametric
theories can have subtype parameters, and assumptions on the parameters.
The rules for subtype parameters and assumptions are omitted for now but
will be included in an expanded version of this report.

Chapter 6

Conditional Expressions and
Logical Connectives

We have, so far, introduced the core of PVS containing types, type definitions,
constant and variable declarations, subtypes, dependent types, and theories.
In extending the language with both explicit and recursive constant definitions
and formulas, a crucial difference is that the logical context under which a
type-correctness condition is generated provides additional assumptions that
can be used in proving any proof obligations. Examples of expressions where
an extended context is needed to establish type correctness by discharging
proof obligations include

1. x 6= y ⊃ (x+y)/(x−y) ≤ 0. The type of the division operator constrains
the denominator to be nonzero, that is, {x : real | x 6= 0}. In the given
expression, the denominator can be shown to be nonzero only in the
context of the antecedent x 6= y.

2. IF(i > 0, i,−i) has type nat given integer i provided the then and else
parts are typechecked with the assumptions i > 0 and ¬(i > 0), respec-
tively.

PVS has a polymorphic primitive equality predicate:

equality[T : TYPE] : THEORY = { =: [[T, T] -> bool] }

Note that an equality of the form equality[T].=(a, b) is informally written
as a = b. When it is relevant to indicate the type parameter, we write the
equality as a =T b. It can be deduced from the meaning of equality that if
S is a subtype of T , then for a and b in S, it must be the case that a =S b

49

50 Chapter 6. Conditional Expressions and Logical Connectives

iff a =T b. Thus, we can assume that equality is always parameterized by
a maximal type. We assume that any relevant context Γ contains the above
declaration of the theory equality. Furthermore, any satisfying assignment
γ for such a Γ must satisfy

γ(equality)(X)(=) = {〈x, x〉 | x ∈ X}.

The negation operation can be defined in terms of equality as shown below.
We assume that the context contains a declaration of the form

¬ : [bool→bool] = (λ (x : bool) : x = FALSE)

As is clear, a satisfying assignment γ for a context Γ containing the above
declaration must be such that γ(¬) yields the usual truth-table semantics, that
is, {〈0,1〉, 〈1,0〉}.

We can then introduce the polymorphic IF-THEN-ELSE operation as fol-
lows:

if_def [T: TYPE]: THEORY = { IF:[bool,T,T -> T] }

In typechecking conditional expressions, the notion of context has to be
extended to include formulas so that the typechecking of the subterm b in
IF(a, b, c) is done in the context of a, and the typechecking of c is done in the
context of ¬a. There is one new typechecking rule for contexts with formulas.

τ()(Γ, a) = CONTEXT, if

τ()(Γ) = CONTEXT, and

(τ(Γ)(a) ∼ bool)Γ

Note that the type rule checks that the type of a is compatible with bool

rather than equivalent to it since it is possible that the type of a might be a
subtype of bool.

Definition 40 (satisfaction for contexts with formulas) An assignment
γ satisfies context Γ when in addition to the conditions in Definition 39, for
each prefix Γ′, a of Γ, M(Γ′ | γ)(a) = 1.

The typechecking of conditional expressions is different from that of other
application expressions since the test part of the conditional expression is
introduced into the context as a contextual assumption.

51

Definition 41 (type rule for conditional expressions)

τ(Γ)(if def[T].IF(a, b, c)) = T, if (τ(Γ)(a) ∼ bool)Γ,

τ(Γ, a)(b) = B,

(B ∼ T)Γ,a,

`Γ,a π(T)(b)

τ(Γ,¬a)(c) = C,

(C ∼ T)Γ,¬a,

`Γ,¬a π(T)(c)

The meaning of conditional expressions must be treated in a special way
since the else part need not denote when the test part is true and, correspond-
ingly, the then part need not denote if the test part is false. We assume that
any relevant contexts Γ contain the above declaration of the if def theory.
Conditional expressions can be regarded as a new construct in the language
rather than a form of application. However, it is conservative to regard con-
ditional expressions as applications since the latter introduce the additional
constraint that all the arguments must already denote, that is, applications
are strict.

Definition 42 (meaning function for conditional expressions)

M(Γ | γ)(if def[T].IF(a, b, c)) =

{
M(Γ | γ)(b), if M(Γ | γ)(a) = 1
M(Γ | γ)(c), otherwise

The semantics for conditional expressions raises an important issue. The
equality

if def[bool].IF(x, y, FALSE) = if def[bool].IF(y, x, FALSE)

is semantically valid for variables x and y of type bool. An expression like
if def[bool].IF(i 6= 0, 1/i > 0, FALSE) can be typechecked to have the type
bool since it generates a valid proof obligation i 6= 0 ⊃ i 6= 0, but the seem-
ingly equivalent expression if def[bool].IF(1/i > 0, i 6= 0, FALSE) generates
an unverifiable proof obligation i 6= 0. This may seem contradictory since the
equality suggests a transformation of a type correct conditional expression to
a type incorrect expression. The resolution here is that equality cannot be

52 Chapter 6. Conditional Expressions and Logical Connectives

instantiated with i 6= 0 for x and 1/i > 0 for y since the expression 1/i > 0
typechecks as having type bool only when i 6= 0 is known from the context.
The same applies in the case of the other propositional connectives, thus en-
suring that each expression is type correct in the context in which it occurs.

We can then define the propositional connectives in terms of conditional
expressions.

∧ : [[bool, bool]→bool] = λ(x : bool, y : bool) : if def[bool].IF(x, y, FALSE)

∨ : [[bool, bool]→bool] = λ(x : bool, y : bool) : if def[bool].IF(x, TRUE, y)

⊃: [[bool, bool]→bool] = λ(x : bool, y : bool) : if def[bool].IF(x, y, TRUE)

In the typechecking of terms of the form a∧ b, we follow the corresponding
rule for the definition so that the term a is assumed in the context when
typechecking term b. Similarly, for a ∨ b, the formula ¬a is assumed in the
context when typechecking b, and for a ⊃ b, the formula a is assumed in the
context when typechecking b. The Boolean equivalence operator IFF has no
special rules for adding formulas to contexts during typechecking.

6.1 Summary

The use of assumption formulas enables expressions to be typechecked within
the narrow context of their use so that the governing assumptions can be used
in discharging any proof obligations. The type rules for conditional expressions
and the Boolean connectives ∧, ∨, and ⊃ make use of contextual assumptions.

Chapter 7

Proof Theory of PVS

The final step in the presentation of the semantics is the presentation of the
proof rules for the idealized subset of PVS described thus far. As already indi-
cated, the proof theory is an integral part of the semantics since typechecking
and proof checking are closely intertwined. Fortunately, the proof rules turn
out to be much less complicated than the type rules.

The PVS proof theory is presented in terms of a sequent calculus. A
sequent is of the form Σ `Γ Λ, where Γ is the context, Σ is a set of antecedent
formulas, and Λ is a set of consequent formulas. Such a sequent should be read
as stating that the conjunction of the formulas in Σ implies the disjunction of
formulas in Λ.

Inference rules are presented in the form

premise(s)

conclusion
name side condition

7.1 PVS Proof Rules

7.1.1 Structural Rules

The structural rules permit the sequent to be rearranged or weakened via the
introduction of new sequent formulas into the conclusion. All the structural
rules can be expressed in terms of the single powerful weakening rule shown
below. It allows a weaker statement to be derived from a stronger one by
adding either antecedent formulas or consequent formulas. The relation Σ1 ⊆
Σ2 holds between two lists when all the formulas in Σ1 occur in the list Σ2.

Σ1 `Γ Λ1

Σ2 `Γ Λ2
W if Σ1 ⊆ Σ2 and Λ1 ⊆ Λ2

53

54 Chapter 7. Proof Theory of PVS

Both the Contraction and Exchange rules shown below are absorbed by the
above weakening rule W. The Contraction rules C ` and ` C allow multiple
occurrences of the same sequent formula to be replaced by a single occurrence.

a, a,Σ `Γ Λ

a,Σ `Γ Λ
C ` Σ `Γ a, a,Λ

Σ `Γ a,Λ
` C

The Exchange rule asserts that the order of the formulas in the antecedent
and the consequent parts of the sequent is immaterial. It can be stated as

Σ1, b, a,Σ2 `Γ Λ

Σ1, a, b,Σ2 `Γ Λ
X ` Σ `Γ Λ1, b, a,Λ2

Σ `Γ Λ1, a, b,Λ2
` X

As seen above, inference rules have the general form

Σ1 ` Λ1 · · · Σn ` Λn

Σ ` Λ
R.

This says that if we are given a leaf of a proof tree of the form Σ ` Λ, then by
applying the rule named R, we may obtain a tree with n new leaves.

7.1.2 Cut Rule

The cut rule Cut can be used to introduce a case split on a formula a into a
proof of a sequent Σ `Γ Λ so as to yield the subgoals Σ, a `Γ Λ and Σ `Γ a,Λ,
which can be seen as assuming a along one branch and ¬a along the other.

(τ(Γ)(a) ∼ bool)Γ Σ, a `Γ Λ Σ `Γ a,Λ

Σ `Γ Λ
Cut

7.1.3 Propositional Axioms

The axioms rule Ax simply asserts that a follows from a.

Σ, a `Γ a,Λ
Ax

The next two rules assert that any sequent with either an antecedent oc-
currence of FALSE or a consequent occurrence of TRUE is an axiom.

Σ, FALSE `Γ Λ
FALSE `

Σ `Γ TRUE,Λ
` TRUE

7.1. PVS Proof Rules 55

7.1.4 Context Rules

Certain formulas hold in a context simply because they are already asserted
in the context either as a formula or a constant definition.

`Γ a
ContextFormula if a is a formula in Γ

`Γ s = a
ContextDefinition if s : T = a is a constant definition in Γ

The context Γ can be extended with antecedent formulas or negations of
consequent formulas using the following two rules.

Σ, a `Γ,a Λ

Σ, a `Γ Λ
Context ` Σ `Γ,¬a a,Λ

Σ `Γ a,Λ
` Context

The following context-weakening rule is useful since it shows that provabil-
ity is monotonic with respect to the context.

Σ `Γ Λ

Σ `Γ′ Λ
ContextW if Γ is a prefix of Γ′

7.1.5 Conditional Rules

The rules governing the elimination of IF-THEN-ELSE in a proof are unusual
since they augment the context with the test part or its negation, as in the
corresponding type rules.

Σ, a, b `Γ,a Λ Σ, c `Γ,¬a a,∆

Σ, IF(a, b, c) `Γ Λ
IF `

Σ, a `Γ,a b,Λ Σ `Γ,¬a a, c,Λ

Σ `Γ IF(a, b, c),Λ
` IF

7.1.6 Equality Rules

The rules for equality can be stated as below. The rules of transitivity and
symmetry for equality can be derived from these rules. The notation a[e] is
used to highlight one or more occurrences of e in the formula a such that there
are no free variable occurrences in e.1 The notation Λ[e] similarly highlights
occurrences of e in Λ.

1We enforce an invariant on a sequent that it must not contain any free variables. This
invariant is preserved by each of the proof rules.

56 Chapter 7. Proof Theory of PVS

Σ `Γ a = a,Λ
Refl

a = b,Σ[b] `Γ Λ[b]

a = b,Σ[a] `Γ Λ[a]
Repl

7.1.7 Boolean Equality Rules

The rule Repl TRUE asserts that an antecedent formula a can be treated as an
antecedent equality of the form a = TRUE, and correspondingly, a consequent
formula a can be treated as an antecedent equality of the form a = FALSE.

Σ[TRUE], a `Γ Λ[TRUE]

Σ[a], a `Γ Λ[a]
Repl TRUE

Σ[FALSE], a `Γ Λ[FALSE]

Σ[a] `Γ a,Λ[a]
Repl FALSE

The rule TRUE-FALSE asserts that TRUE and FALSE are distinct Boolean
constants.

Σ, TRUE = FALSE `Γ Λ
TRUE-FALSE

7.1.8 Reduction Rules

The reduction rules are equality rules (axioms) that provide the obvious sim-
plifications for applications involving lambda abstractions and product projec-
tions.

`Γ (λ(x : T) : a)(b) = a[b/x]
β

`Γ pi(a1, a2) = ai
π

7.1.9 Extensionality Rules

The extensionality rules are also equality rules for establishing equality be-
tween two expressions of function or product type. The extensionality rule
for functions, FunExt, introduces a Skolem constant s to determine that two
functions f and g are equal when the results of applying them to an arbitrary
argument s are equal.

Σ `Γ,s:A (f s) =B[s/x] (g s),Λ

Σ `Γ f =[x:A→B] g,Λ
FunExt Γ(s) undefined

7.2. Soundness of the Proof Rules 57

The extensionality rule for products asserts that two products are equal if
their corresponding projections are equal.

Σ `Γ p1(a) =T1 p1(b),Λ Σ `Γ p2(a) =T2[(p1 a)/x] p2(b),Λ

Σ `Γ a =[x:T1T2] b,Λ
TupExt

Recall that the quantifiers can be defined in terms of lambda abstraction
and equality so that (∀(x : T) : a) is just (λ(x : T) : a) = (λ(x : T) : TRUE).
Existential quantification (∃(x : T) : a) can easily be defined as ¬(∀(x : T) :
¬a). The proof rules for quantifiers can then be derived from the rules β,
TupExt, and the equality rules.

7.1.10 Type Constraint Rule

We need a rule to introduce the type constraint on a term as an antecedent
formula of the given goal sequent.

τ(Γ)(a) = A π(A)(a),Σ `Γ Λ

Σ `Γ Λ
Typepred

7.2 Soundness of the Proof Rules

Proposition 7.1 If Γ is a prefix of Γ′, τ()(Γ) = τ()(Γ′) = CONTEXT, γ′ is
a satisfying assignment for Γ′, and γ = γ′ � Γ then for any a such that
τ(Γ)(a) = τ(Γ′)(a), it is the case that M(Γ | γ)(a) =M(Γ′ | γ′)(a).

Theorem 8 (soundness) If τ()(Γ) = CONTEXT such that for every formula
a in Σ; Λ, (τ(Γ)(a) ∼ bool)Γ, and Σ `Γ Λ is provable, then for any satisfying
assignment γ for Γ, either there is a formula b in Σ, such thatM(Γ | γ)(b) = 0
or a formula c in Λ, such that M(Γ | γ)(c) = 1.

Proof. The proof is by induction on the structure of the proof of Σ `Γ Λ.
Recall that this proof is actually part of a simultaneous induction that includes
the soundness of the type rules relative to the semantic function, that is,
Theorems 6 and 7. Specific invocations of the soundness theorem occur in the
proofs of Theorem 5 and Proposition 4.6.

1. Structural Rules : Since the subset of formulas in the premise and the
conclusion of these rules are the same, the conclusion follows easily from
the induction hypothesis.

58 Chapter 7. Proof Theory of PVS

2. Cut : By the semantic soundness of the type rules, we haveM(Γ | γ)(a) ∈
2. If M(Γ | γ)(a) = 0, then by the induction hypothesis on the sec-
ond subgoal of the proof rule, there must be some b in Σ such that
M(Γ | γ)(b) = 0 or a c in Λ such thatM(Γ | γ)(c) = 1. The case when
M(Γ | γ)(a) = 1 is symmetrical.

3. Propositional Axioms : Obvious.

4. Context Rules :

ContextFormula: If γ satisfies Γ and a ∈ Γ, then M(Γ | γ)(a) = 1.

ContextDefinition: If γ satisfies Γ and s : T = a is a declaration in Γ,
then by the definition of satisfaction, M(Γ | γ)(s) =M(Γ | γ)(a).

Context `: The argument is trivial when M(Γ | γ)(a) = 0. Oth-
erwise, γ satisfies the extended context Γ, a, and the conclusion
follows from the induction hypothesis.

` Context: Similar to Context ` above.

ContextW: If γ satisfies Γ′, then it also satisfies Γ, and hence the
proof.

5. Conditional Rules : We only consider IF ` since the ` IF proof is similar.
If M(Γ | γ)(IF(a, b, c)) = 0, the conclusion follows trivially. Otherwise,
If γ satisfies Γ, then M(Γ | γ)(a) ∈ 2. If M(Γ | γ)(a) = 1, then
M(Γ | γ)(b) = 1. The induction hypothesis on the subgoal Σ, a, b `Γ,a Λ
yields the desired conclusion. Similarly, if M(Γ | γ)(a) = 0, we have
M(Γ | γ)(c) = 1 and the induction hypothesis on the second subgoal
yields the desired conclusion.

6. Equality Rules : The Refl rule is obvious. For the Repl rule, ifM(Γ | γ)(a =
b) = 0, the conclusion follows trivially. Otherwise, M(Γ | γ)(a) =
M(Γ | γ)(b). Hence, γ satisfies the extended context Γ, a = b. Then for
each c[a] in Σ[a] or Λ[a], M(Γ | γ)(c[a]) =M(Γ | γ)(c[b]).

7. Boolean Equality Rules : The Repl TRUE and Repl FALSE rules fol-
low easily since when M(Γ | γ)(a) = 1, we have M(Γ | γ)(c[a]) =
M(Γ | γ)(c[TRUE]). A similar argument applies to Repl FALSE.

The soundness of TRUE-FALSE is easy sinceM(Γ | γ)(TRUE = FALSE) = 0.

8. Reduction Rules : The β-reduction rule follows because M(Γ | γ)((λ(x :
T) : a)(b)) is M(Γ, x : VAR T | γ{x ← M(Γ | γ)(b)})(a) which by the
Substitution Lemma 1 is equal to M(Γ | γ)(a[b/x]).

7.2. Soundness of the Proof Rules 59

The soundness π-reduction rule is a direct consequent of Definition 3.

9. Extensionality Rules :

FunExt: First consider the case when the domain typeM(Γ | γ)(A) is
empty. Then by Definition 26, M(Γ | γ)(f) = M(Γ | γ)(g) = ∅.
Therefore M(Γ | γ)(f = g) = 1 and hence the conclusion.2

The case whenM(Γ | γ)(A) is nonempty, we have for any γ satisfy-
ing Γ and s ∈M(Γ | γ)(A), that γ′ given by γ{s← z} is a satisfying
assignment for Γ, s : A. By the induction hypothesis, there is either
an a in Σ such thatM(Γ, s : A | γ′)(b) = 0 or a c in (f s) = (g s),Λ
such that M(Γ, s : A | γ′)(c) = 1. If we have such a b in Σ, by
Proposition 7.1, we also have that M(Γ | γ)(b) = 0. A similar
argument can be used if we have such a c in Λ. If c is (f s) = (g s),
thenM(Γ | γ)(f)(z) =M(Γ | γ)(g)(z) for every z inM(Γ | γ)(A).
By set-theoretic extensionality, this means that M(Γ | γ)(f) and
M(Γ | γ)(g) are identical elements of ΠF where F maps z in
M(Γ | γ)(A) to an element of M(Γ, x : VAR A | γ{x ← z})(B).
Therefore M(Γ | γ)(f = g) = 1 as desired.

TupExt: If there is some d in Σ such that by applying the induction
hypothesis to any of the subgoals M(Γ | γ)(d) = 0, then the same
holds for the conclusion sequent. Similarly, if the induction hypoth-
esis on some subgoal yields a c in Λ such that M(Γ | γ)(c) = 1,
then the same holds for the conclusion sequent. So the remain-
ing case is when, by the induction hypothesis, M(Γ | γ)(pi(a)) =
M(Γ | γ)(pi(b)) for each i ∈ {1, 2}. It is therefore easy to conclude
by set-theoretic extensionality that M(Γ | γ)(a) and M(Γ | γ)(b)
are identical elements of M(Γ | γ)(a/[T1, T2]). We can then use
Proposition 4.6 to conclude thatM(Γ | γ)(a) andM(Γ | γ)(b) are
identical elements of M(Γ | γ)([T1, T2]).

10. Type Constraint Rule: Recall from Proposition 3.9 that when τ(Γ)(a) =
A, then M(Γ | γ)(π(A)(a)) = 1. Given this and the induction hy-
pothesis, it must either be the case that we have a b in Σ such that
M(Γ | γ)(b) = 0 or a c in Λ such that M(Γ | γ)(c) = 1.

2Since the subgoal sequent Σ `Γ,s:A (f s) = (g s),Λ is valid when M(Γ | γ)(A) = ∅ for
all assignments γ, it is natural to ask how it is actually proved. The only way a type A can
be empty under any assignment γ is if M(Γ | γ)(π(A)(a) = 0). The Typepred rule can
therefore be used on the Skolem constant s to complete the proof.

60 Chapter 7. Proof Theory of PVS

To tie the development so far into a single simultaneous induction as
promised, we state the key theorem whose subproofs have been given by the
theorems presented thus far, namely, Theorems 6, 7, and 8.

Theorem 9 If τ()(Γ) = CONTEXT, then

1. If Σ,Λ is a list of preterms such that for every a in Σ; Λ, (τ(Γ)(a) ∼
bool)Γ, and Σ `Γ Λ is provable, then for any satisfying assignment γ for
Γ, either there is a b in Σ, such that M(Γ | γ)(b) = 0 or a c in Λ, such
that M(Γ | γ)(c) = 1.

2. If A is a pretype such that τ(Γ)(A) = TYPE, then for any assignment γ
satisfying Γ, M(Γ | γ)(A) ∈ U .

3. If a is a preterm such that τ(Γ)(a) = A, then for any assignment γ
satisfying Γ, M(Γ | γ)(a) ∈M(Γ | γ)(A).

7.3 Summary

The logical inference rules for the PVS logic have been presented in a sequent
calculus format. The formal semantics presented in the earlier chapters is used
to establish the soundness of these proof rules.

Chapter 8

Conclusion

We have presented the syntax and semantics of idealized PVS in several stages.
In the first stage we introduced the simply typed fragment, which was then ex-
tended with type definitions. The third such fragment included subtyping; the
fourth fragment introduced dependent typing. Finally, we introduced constant
definitions and parametric and nonparametric theories.

The semantic definition was given in a novel, functional style where a
canonical type was assigned to each type correct term. The interplay be-
tween types and proofs in PVS introduced subtleties and complexities into
the semantic definition. We can now answer some of the questions raised in
Chapter 1:

• What is the semantic core of the language, and what is just syntactic
sugar?

The semantic core of the language is a typed lambda calculus with simple
function and tuple types, predicate subtypes, dependent types, paramet-
ric theories, and conditional expressions. Many of the other features of
the PVS language such as records and update expressions can be ex-
plained in terms of the core language.

• What are the rules for determining whether a given PVS expression is
well typed?

The typechecking rules have been presented in terms of the definition of
the τ operator in Chapters 2, 3, 4, 5, and 6.

• How is subtyping handled, and in particular, how are proof obligations
corresponding to subtypes generated?

Typechecking an expression a with respect to predicate subtype con-
straint {x : T |p(x)} is done by generating the proof obligation p(a)

61

62 Chapter 8. Conclusion

under the logical context in which a is being typechecked. This is made
precise in Definitions 16 and 41. Proof obligations are generated when
typechecking contexts (for nonemptiness), typechecking expressions with
respect to expected subtypes, and comparing two types containing sub-
type expressions for compatibility.

• What is the meaning, in set-theoretic terms, of a PVS expression or
assertion?

The set-theoretic meaning of well-formed PVS types and expressions is
given by a meaning functionM that assigns a setM(Γ | γ)(T) from the
universe U to each type T , and an elementM(Γ | γ)(a) ofM(Γ | γ)(T)
to a given term a of type T .

• Are the type rules sound with respect to the semantics?

The typechecking function τ is defined to check contexts, preterms, and
pretypes for type correctness. The type rules are shown to be sound with
respect to the given semantics in Theorem 9.

• Are the proof rules sound with respect to the semantics?

The proof rules are given in Chapter 7 in a sequent calculus format and
proved to be sound with respect to the semantics in Theorem 9.

• What is the form of dependent typing used by PVS, and what kinds of
type dependencies are disallowed by the language?

The semantic analysis of dependent typing in Chapter 4 revealed that
type dependencies were constrained to be rank-bounded. This is true
because the dependencies in dependent typing only constrain the pred-
icate part of predicate subtypes. Thus, when there is a dependent type
T (n) that depends on a parameter n, the meaning of T (n) has a fixed
rank regardless of the meaning assigned to n. The PVS language fea-
tures used to define dependent types all preserve the rank-boundedness.
Language extensions violating rank-boundedness such as a type depen-
dency of the form [n : nat→T n] are disallowed. One can extend the
language with such dependent types, but the semantics would then be
considerably more complicated.

• What is the meaning of theory-level parametricity, and what, if any, are
the semantic limits on such parameterization?

63

The semantics of parametric theories is described in Chapter 5. In par-
ticular, the semantics for parametric theories is given in terms of rank-
preserving maps between the meanings of the parameters and the mean-
ings of the identifiers declared in the theory. These maps must be such
that the rank of an assignment to a type in a theory depends only on
the ranks of the (meanings of the) type parameters.

• What language extensions are incompatible with the reference semantics
given here?

We have already indicated that any language extension, such as an n-
tuple type T n, that violates rank-boundedness would be incompatible
with the semantics presented here.

This report presents only the core language of PVS. A more complete
semantic treatment would include arithmetic, recursive constant definitions,
inductive definitions, recursive datatypes, assumptions on theory parameters,
and type judgements.

Acknowledgments. The advice and encouragement of John Rushby, Rick
Butler, Paul Miner, Pat Lincoln, and Mandayam Srivas are greatly appreci-
ated, as are the useful expert comments of Peter Dybjer, Mike Gordon, Doug
Howe, and Paul Jackson. Bruno Dutertre, Paul Miner, and Harald Rueß sug-
gested numerous improvements to earlier drafts.

Bibliography

[AMCP84] P. B. Andrews, D. A. Miller, E. L. Cohen, and F. Pfenning. Au-
tomating higher-order logic. In W. W. Bledsoe and D. W. Love-
land, editors, Automated Theorem Proving: After 25 Years, pages
169–192. American Mathematical Society, Providence, R.I., 1984.

[And86] Peter B. Andrews. An Introduction to Logic and Type Theory: To
Truth through Proof. Academic Press, New York, NY, 1986.

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,
J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P.
Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Imple-
menting Mathematics with the Nuprl Proof Development System.
Prentice Hall, Englewood Cliffs, NJ, 1986.

[Chu40] A. Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56–68, 1940.

[DFH+91] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Christine
Paulin-Mohring, and Benjamin Werner. The COQ proof assis-
tant user’s guide: Version 5.6. Rapports Techniques 134, INRIA,
Rocquencourt, France, December 1991.

[Dyb91] Peter Dybjer. Inductive sets and families in Martin-Löf’s type
theory and their set-theoretic semantics. In Logical Frameworks,
pages 280–306. Cambridge University Press, 1991.

[EHDM93] User Guide for the Ehdm Specification Language and Verification
System, Version 6.1. Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, February 1993. Three volumes.

[FBHL84] A. A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of Set
Theory, volume 67 of Studies in Logic and the Foundations of

64

Bibliography 65

Mathematics. North-Holland, Amsterdam, The Netherlands, sec-
ond printing, second edition, 1984.

[FGJM85] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and
José Meseguer. Principles of OBJ2. In Brian K. Reid, editor,
12th ACM Symposium on Principles of Programming Languages,
pages 52–66. Association for Computing Machinery, 1985.

[GH93] John V. Guttag and James J. Horning with S. J. Garland, K. D.
Jones, A. Modet, and J. M. Wing. Larch: Languages and Tools
for Formal Specification. Texts and Monographs in Computer
Science. Springer-Verlag, 1993.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to
HOL: A Theorem Proving Environment for Higher-Order Logic.
Cambridge University Press, Cambridge, UK, 1993. HOL home
page: http://www.cl.cam.ac.uk/Research/HVG/HOL/.

[How91] Douglas J. Howe. On computational open-endedness in Martin-
Löf’s type theory. In Proceedings, Sixth Annual IEEE Symposium
on Logic in Computer Science, pages 162–172, Amsterdam, The
Netherlands, 15–18 July 1991. IEEE Computer Society Press.

[How96] Douglas J. Howe. Semantic foundations for embedding HOL in
Nuprl. In Martin Wirsing and Maurice Nivat, editors, Algebraic
Methodology and Software Technology, 5th International Confer-
ence, AMAST’96, pages 85–101. Number 1101 in Lecture Notes
in Computer Science, Springer-Verlag, 1996.

[Jon90] Cliff B. Jones. Systematic Software Development Using VDM.
Prentice Hall International Series in Computer Science. Prentice
Hall, Hemel Hempstead, UK, second edition, 1990.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM TOPLAS,
16(3):872–923, May 1994.

[LP97] Leslie Lamport and Lawrence C. Paulson. Should your specifi-
cation language be typed? SRC Research Report 147, Digital
Systems Research Center, Palo Alto, CA, May 1997. Available at
http://www.research.digital.com/SRC.

[Mel89] Thomas F. Melham. Automating recursive type definitions in
higher order logic. In G. Birtwistle and P. A. Subrahmanyam,

66 Bibliography

editors, Current Trends in Hardware Verification and Theorem
Proving, pages 341–386, New York, NY, 1989. Springer-Verlag.

[MMMS90] Albert R. Meyer, John C. Mitchell, Eugenio Moggi, and Richard
Statman. Empty types in polymorphic lambda calculus. In Ger-
ard Huet, editor, Logical Foundations of Functional Programming,
University of Texas at Austin Year of Programming, pages 273–
284. Addison-Wesley, 1990.

[OS97] S. Owre and N. Shankar. Abstract datatypes in PVS. Technical
report, Computer Science Laboratory, SRI International, Menlo
Park, CA, December 1997. Revised version of SRI-CSL-93-9. To
appear as a NASA Contractor Report.

[OSRSC98] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
User Guide for the PVS Specification and Verification System.
Computer Science Laboratory, SRI International, Menlo Park,
CA, September 1998. Three volumes: Language, System, and
Prover Reference Manuals.

[RAISE92] The RAISE Language Group. The RAISE Specification Lan-
guage. BCS Practitioner Series. Prentice Hall International, Hemel
Hempstead, UK, 1992.

[Spi88] J. M. Spivey. Understanding Z: A Specification Language and its
Formal Semantics. Cambridge Tracts in Theoretical Computer
Science 3. Cambridge University Press, Cambridge, UK, 1988.

