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Chapter 1

Introduction

PVS is a specification and verification environment developed at SRI International.1 Several
documents describe the use of PVS [OSRSC98]; this document explains the PVS mecha-
nisms for defining and using abstract datatypes.2 It describes a PVS specification for the
data structure of ordered binary trees, defines various operations on this structure, and
contains PVS proofs of some useful properties of these operations. It also describes vari-
ous other data structures that can be captured by the PVS abstract datatype mechanism,
and documents the built-in capabilities of the PVS proof checker for simplifying abstract
datatype expressions. The exposition does assume some general familiarity with formal
methods but does not require any specific knowledge of PVS.

PVS provides a mechanism for defining abstract datatypes of a certain class. This
class includes all of the “tree-like” recursive data structures that are freely generated by a
number of constructor operations.3 For example, the abstract datatype of lists is generated
by the constructors null and cons. The abstract datatype of stacks is generated by the
constructors empty and push. An unordered list or a bag is an example of a data structure
that is not freely generated since two different sequences of insertions of elements into a
bag can yield equivalent bags. The queue datatype is freely generated but is not considered
recursive in PVS since the accessor head returning the first element of the queue is not an
inverse of the enqueue constructor. This means that the queue datatype must either be

1PVS is freely available and can be obtained via FTP from /pub/pvs/ through the Internet host ftp.

csl.sri.com. The URL http://www.csl.sri.com/pvs.html provides access to PVS-related information
and documents.

2The PVS abstract datatype mechanism is still evolving. Some of the contemplated changes could
invalidate parts of the description in this report. This report itself updates SRI CSL Technical Report
CSL-93-9 so that it is accurate with respect to the alpha version of PVS 2.1. Future versions of the report
will be similarly revised to maintain accuracy.

3The abstract datatype mechanism of PVS is partly inspired by the shell principle used in the Boyer-
Moore theorem prover [BM79]. Similar mechanisms exist in a number of other specification and programming
languages.

1
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2 Introduction

explicitly axiomatized or implemented using some other datatype such as the list or stack
datatype.

At the semantic level, a recursive datatype introduces a new type constructor that is
a solution to a recursive type equation of the form T = τ [T ]. Typically, the recursive
occurrences of the type name T on the right-hand side must occur only positively (as
defined in Section 2.1) in the type expression τ [T ] and the datatype is the least solution to
the recursion equation. For example, the datatype of lists of element type A is the least
solution to the type equation T = {null}+A× T , where + is the disjoint union operation
and the × operation returns the Cartesian product. The minimality of lists datatype yields
a structural induction principle asserting that any list predicate P , if P is closed under the
list datatype operations, i.e., where P (null) and ∀x, l : P (l) ⊃ P (cons(x, l)), then P holds
of all lists. The induction principle also yields a structural recursion theorem asserting that
a function that is defined by induction on the structure is total and uniquely defined. By
the semantic definition of lists, the equality relation on the lists datatype is also the least
equality where the constructor cons can be regarded as a congruence. The minimality
of the equality relation asserts that the constructor cons is an injective operation from
A × list to list. As a consequence of the minimality of equality on the datatype, one
can define accessor functions such as car and cdr on lists constructed using cons, derive
extensionality principles, and define functions by case analysis on the constructor. The PVS
datatype mechanism is used to generate theories introducing the datatype operations for
constructing, recognizing, and accessing datatype expressions, defining structural recursion
schemes over datatype expressions, and asserting axioms such as those for extensionality
and induction.

The datatype of lazy lists or streams is also generated by the same recursion scheme
using the constructors null and cons but it is a co-recursive datatype (or a co-datatype)
rather than a recursive datatype in that it is the greatest solution to the same recursion
equation corresponding to lists. PVS does not yet have a similar mechanism for introducing
co-datatypes, and this would be a useful extension to the language. Such a theory of
sequences has been formalized in PVS by Hensel and Jacobs [HJ97] (see also the URL:
http://www.cs.kun.nl/~bart/sequences.html).

PVS is a specification language with a set-theoretic semantics. Types are therefore
interpreted as sets of elements and a function type [A -> B] is interpreted as the set of all
total maps from the set corresponding to A to that for B. The use of set-theoretic semantics
leads to some important constraints on the form of recursive definitions that can be used
in PVS datatype declarations.

In Section 2, we first present the declaration for the list datatype to convey the syntac-
tic restrictions on such datatype declarations. The outcome of such datatype declarations in
terms of generated theories is explained in detail for the datatype of binary trees in Section 3.
In Section 4, the binary tree data structure is used to define ordered binary trees. Section 5
shows how enumerated datatypes can be defined as simple forms of PVS datatypes. Sec-

http://www.cs.kun.nl/~bart/sequences.html
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tion 6 shows the definition for disjoint unions. Mutually recursive datatypes are described
in Section 7. Subtyping on recursive datatypes is described in Section 8. In Section 9,
datatypes are used to construct effective representations for recursive ordinals which are
then used as lexicographic termination measures for recursive functions. Section 10 shows
some proofs about ordered binary trees which use some of the built-in simplifications shown
in 11 along with the proof strategies described in Section 12. Some limitations of the PVS
datatype mechanism are described in Section 13, followed by a discussion of related work
in Section 14.
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Chapter 2

Lists: A Simple Abstract Datatype

The PVS prelude contains the following declaration of the abstract datatype of lists of a
given element type.

1list[t:TYPE] : DATATYPE
BEGIN
null: null?
cons (car: t, cdr :list) :cons?
END list

Here list is declared as a type that is parametric in the type t with two constructors
null and cons. The constructor null takes no arguments. The predicate recognizer null?
holds for exactly those elements of the list datatype that are identical to null. The
constructor cons takes two arguments where the first is of the type t and the second is a
list. The recognizer predicate cons? holds for exactly those elements of the list type
that are constructed using cons, namely, those that are not identical to null. There are
two accessors corresponding to the two arguments of cons. The accessors car and cdr
can be applied only to lists satisfying the cons? predicate so that car(cons(x, l)) is x
and cdr(cons(x, l)) is l. Note that car(null) is not a well typed expression in that it
generates a invalid proof obligation, a type correctness condition (TCC), that cons?(null)
must hold.

The rules on datatype declarations as enforced by the PVS typechecker are:

1. The constructors must be pairwise distinct, i.e., there should be no duplication among
the constructors.

2. The recognizers must be pairwise distinct, and also distinct from any of the construc-
tors and the datatype name itself.

5



6 Lists: A Simple Abstract Datatype

3. There must be at least one non-recursive constructor, that is, one that has no recursive
occurrences of the datatype in its accessor types.1

4. The recursive occurrences of the datatype name in its definition must be positive as
described in Section 2.1.

When the list abstract datatype is typechecked, three theories are generated in the
file list adt.pvs. The first theory, list adt, contains the basic declarations and axioms
formalizing the datatype, including an induction scheme and an extensionality axiom for
each constructor. The second theory, list adt map, defines a map operation that lifts
a function of type [s -> t] to a function of type [list[s] -> list[t]]. The third
theory, list adt reduce, formalizes a general-purpose recursion operator over the abstract
datatype. These theories are examined in more detail below for the case of binary trees.
An important point to note about the generated datatype axioms is that apart from the
induction and extensionality axioms, all the other axioms are automatically applied by
PVS proof commands such as assert and beta so that the relevant axioms need never be
explicitly invoked during a proof.

2.1 Positive type occurrence.

For each recursive datatype defined by means of the PVS DATATYPE declaration, the type-
checker generates theories, definitions, and axioms similar to those shown above for the case
of binary trees. In general, such a datatype can take individual and type parameters, and
is specified in terms of the constructors, and the corresponding recognizers and accessors.
The type of the accessor fields can be given recursively in terms of the datatype itself as
long as this recursive occurrence of the type is positive in a certain restricted sense. A type
occurrence T is positive in a type expression τ iff either

1. τ ≡ T.

2. T occurs positively in a supertype τ ′ of τ .

3. τ ≡ [τ1→τ2] where T occurs positively in τ2. For example, T occurs positively in
sequence[T] where sequence[T] is defined in the PVS prelude as the function type
[nat -> T].

1This is a needless restriction which will be removed in future versions of PVS. It was intended to ensure
that the recursive datatype had a base object. However, it turns out that the restriction does not always
guarantee the existence of such a base object such as when the base constructor has an accessor of an
empty type. Also datatypes violating this restriction can be well-formed such as a datatype okay with one
recursive constructor mk okay that has one accessor get of type list[okay]. The base object in this case is
mk okay(null). When there is no base object, then the datatype is empty.



2.1 Positive type occurrence. 7

4. τ ≡ [τ1, . . . , τn] where T occurs positively in some τi.

5. τ ≡ [# l1 : τ1, . . . , ln : τn #] where T occurs positively in some τi.

6. τ ≡ datatype[τ1, . . . , τn], where datatype is a previously defined datatype and T occurs
positively in τi, where τi is a positive parameter of datatype.

The recursive occurrences of the datatype name in its definition must be positive so
that we can assign a set-theoretic interpretation to all types. It is easy to see that violating
this condition in the recursion leads to contradictions. For example, a datatype T with an
accessor of type [T -> bool] would yield a contradiction since the cardinality of [T ->
bool] is that of the power-set of T which by Cantor’s theorem must be strictly greater
than the cardinality of T. However, we have that distinct accessor elements lead to distinct
datatype elements as well, and hence a contradiction. Similarly, an accessor type of [[T
-> bool] -> bool] is also easily ruled out by cardinality considerations even though the
occurrence of T in it is positive in terms of its polarity.

A positive type parameter T in a datatype declaration is one that only occurs positively
in the type of an accessor. Positive type parameters in datatypes have a special role. As
an example of a nested recursive datatype with recursion on the positive parameters, a
search tree with leaf nodes bearing values of type T can be declared as in 2 . Note that the
recursive occurrence of leaftree is as a (positive) parameter to the list datatype.

2leaftree[T : TYPE] : DATATYPE
BEGIN
leaf(val : T) : leaf?
node(subs : list[leaftree]): node?
END leaftree

Positive datatype parameters are also used to generate the combinators every, some,
and map which are described in detail for the datatype of binary trees in Section 3.
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Chapter 3

Binary Trees

A binary tree is a recursive data structure that in the base case is a leaf node, and in
the recursive case consists of a value component, and left and right subtrees that are
themselves binary trees. Binary trees can be formalized in several ways. In most imperative
programming languages, they are defined as record structures containing pointers to the
subtrees. They can also be encoded in terms of more primitive recursive data structures
such as the s-expressions of Lisp. In a declarative specification language, one can formalize
binary trees by enumerating the relevant axioms. One difficulty with this latter approach
is the amount of effort involved in correctly identifying all of the relevant axioms. Another
difficulty is that it can be tedious to explicitly invoke these axioms during a proof. This is the
motivation for providing a concise abstract datatype mechanism in PVS that is integrated
with the theorem prover. With binary trees, the declaration of the datatype is similar to
that for lists above.

3binary_tree[T : TYPE] : DATATYPE
BEGIN
leaf : leaf?
node(val : T, left : binary_tree, right : binary_tree) : node?

END binary_tree

The two constructors leaf and node have corresponding recognizers leaf? and node?. The
leaf constructor does not have any accessors. The node constructor has three arguments:
the value at the node, the left subtree, and the right subtree. The accessor functions corre-
sponding to these three arguments are val, left, and right, respectively. When the above
datatype declaration is typechecked, the theories binary tree adt, binary tree adt map,
and binary tree adt reduce are generated. The first of these has the form:

9



10 Binary Trees

4binary_tree_adt[T: TYPE]: THEORY
BEGIN

binary_tree: TYPE

leaf?, node?: [binary_tree -> boolean]

leaf: (leaf?)

node: [[T, binary_tree, binary_tree] -> (node?)]

val: [(node?) -> T]

left: [(node?) -> binary_tree]

right: [(node?) -> binary_tree]

Various axioms and definitions omitted.

END binary_tree_adt

Note that the theory is parametric in the value type T.
The first declaration above declares binary tree as a type. The two recognizer predi-

cates on binary trees leaf? and node? are then declared. The constructor leaf is declared
to have type (leaf?) which is the subtype of binary tree constrained by the leaf? pred-
icate. The node constructor is declared as a function with domain type [T, binary tree,
binary tree] and range type (node?) which is again the subtype of binary tree con-
strained by the node? predicate. The three accessors on value (nonleaf) nodes are then
declared. Each of these accessors takes as its domain the subset of binary trees that are
constructed by means of the node constructor. Note that when binary tree adt is instan-
tiated with an empty actual parameter type, the subtype (node?) must be empty since
there is no value component corresponding to an element of (node?).

The remainder of this section presents the axioms and definitions that are generated
from the datatype declaration for binary trees. These axioms and definitions are not meant
to be minimal and some of them are in fact redundant.

3.0.0.1 Definition by cases.

The primitive CASES construct is used for definition by cases on the outermost constructor
of a a PVS datatype expression. The syntax of the CASES construct is

CASES expression OF selections ENDCASES
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where each selection (typically one selection per constructor) is of the form pattern : ex-
pression and a pattern is a constructor of arity n applied to n distinct variables. There
are no explicit axioms characterizing the behavior of CASES. In the case of the binary tree
datatype, when w, x, y, and z range over binary trees, a and b range over the parameter
type T, u ranges over the range type range, and v ranges over the type [T, binary tree,
binary tree -> range], we implicitly assume the two axioms:

CASES leaf OF leaf : u, node(a, y, z) : v(a, y, z) = u

CASES node(b, w, x) OF leaf : u, node(a, y, z) : v(a, y, z) = v(b, w, x)

Note that in the above axioms, the left-hand side occurrences of a, y, and z in v(a, y, z)
are bound.

3.0.0.2 The ord function.

The function ord assigns a number to a datatype construction, i.e., a datatype term given
solely in terms of the constructors, according to its outermost constructor. The ord function
is mainly used to enumerate the elements of an enumerated type (see Section 5). The ord
function is defined using CASES in 5 .

5ord(x: binary_tree): upto(1) =
CASES x OF leaf: 0, node(node1_var, node2_var, node3_var): 1 ENDCASES

Thus ord(leaf) is 0, whereas ord(node(x, A, B)) is 1.

3.0.0.3 Extensionality axioms.

An extensionality axiom is generated corresponding to each constructor. The one for the
leaf terms essentially asserts that leaf is the unique term of type (leaf?).

6binary_tree_leaf_extensionality: AXIOM
(FORALL (leaf?_var: (leaf?), leaf?_var2: (leaf?)):

leaf?_var = leaf?_var2);

For the node constructor, the extensionality axiom is:

7binary_tree_node_extensionality: AXIOM
(FORALL (node?_var: (node?)),

(node?_var2: (node?)):
val(node?_var) = val(node?_var2)
AND left(node?_var) = left(node?_var2)
AND right(node?_var) = right(node?_var2)

IMPLIES node?_var = node?_var2)

In other words, any two value nodes that agree on all the accessors are equal.
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3.0.0.4 Accessor–constructor axioms.

Each accessor–constructor pair generates an axiom indicating the effect of applying the
accessor to an expression constructed using the constructor. For example, the axiom corre-
sponding to val and node has the form:

8binary_tree_val_node: AXIOM
(FORALL (node1_var: T), (node2_var: binary_tree),

(node3_var: binary_tree):
val(node(node1_var, node2_var, node3_var)) = node1_var)

We do not need an explicit axiom asserting that the recognizers leaf? and node? hold of
disjoint subsets of the type of binary trees. This property can be derived from the ord
function and the semantics of the CASES construct described above.

3.0.0.5 Eta axiom.

The eta rule is a useful corollary to the extensionality axiom above and the accessor–
constructor axioms shown above. It is introduced as an axiom in the binary tree adt
theory as shown below though it does follow as a lemma from extensionality.1

9binary_tree_node_eta: AXIOM
(FORALL (node?_var: (node?)):

node(val(node?_var), left(node?_var), right(node?_var)) = node?_var)

3.0.0.6 Structural induction.

The theory binary tree adt also contains a structural induction scheme and a few recursion
schemes. The induction scheme for binary trees is stated as:

10binary_tree_induction: AXIOM
(FORALL (p: [binary_tree -> boolean]):

p(leaf)
AND
(FORALL (node1_var: T), (node2_var: binary_tree),

(node3_var: binary_tree): p(node2_var) AND p(node3_var)
IMPLIES p(node(node1_var, node2_var, node3_var)))

IMPLIES (FORALL (binary_tree_var: binary_tree): p(binary_tree_var)))

In other words, to prove a property of all binary trees, it is sufficient to prove in the base
case that the property holds of the binary tree leaf, and that in the induction case, the
property holds of a binary tree node(v, A, B) assuming (the induction hypothesis) that

1In future versions of PVS, it is intended that these will become lemmas with automatically generated
proofs.
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it holds of the subtrees A and B. One simple consequence of the induction axiom is the
property that all binary trees are either leaf nodes or value nodes. This is also introduced
as an axiom in the theory binary tree adt.

11binary_tree_inclusive: AXIOM
(FORALL (binary_tree_var: binary_tree):

leaf?(binary_tree_var) OR node?(binary_tree_var))

3.0.0.7 Definition by recursion.

As another consequence of induction, we can demonstrate the existence and uniqueness
of functions defined by structural recursion over binary trees. It is, however, convenient
to have a more direct means for defining such recursive functions. PVS therefore provides
various recursion combinators2 which can be used to define recursive functions over datatype
elements. One difficulty with defining a fully general recursion combinator is that it has to
be parametric in the range type of the function being defined. Since PVS only provides such
type parametricity at the level of theories, the generic recursion combinators are defined in
a separate theory binary tree adt reduce which provides the additional type parameter.
The recursion combinators for the common cases of functions returning natural numbers
and sub-ε0 ordinals (see Section 9) are defined in the theory binary tree adt itself.

The recursion combinator used for defining recursive functions over binary trees that
return natural number values, is shown below. The idea is that we want to define a function
f by the following recursion over binary trees:

f(leaf) = a

f(node(v, A, B)) = g(v, f(A), f(B))

We define such an f by taking a and g as arguments to the function reduce nat. Note the
use of the CASES construct to define a pattern-matching case split over a datatype value
that in this case is a binary tree.

2A combinator is a lambda expression without any free variables, but the term can also be applied to an
operation that can be used as a building block for other operations.
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12reduce_nat(leaf?_fun: nat, node?_fun: [[T, nat, nat] -> nat]):
[binary_tree -> nat] =

LAMBDA (binary_tree_adtvar: binary_tree):
CASES binary_tree_adtvar OF
leaf: leaf?_fun,
node(node1_var, node2_var, node3_var):

node?_fun(node1_var,
reduce_nat(leaf?_fun,

node?_fun)
(node2_var),

reduce_nat(leaf?_fun,
node?_fun)

(node3_var))
ENDCASES;

The reduce nat recursion combinator is useful for defining a “size” function as shown
in 22 but has the weakness that node? fun only has access to the val field of the node.
The theory binary tree adt also contains a variant REDUCE nat where the leaf? fun is
a function and the node? fun function takes an additional argument. The definition is
omitted here since a more generic version of this recursion combinator is described below.

A generic version of the structural recursion combinator on binary trees is defined in
binary tree adt reduce where the type nat in the definition of reduce nat has been
generalized to an arbitrary parameter type range.

13binary_tree_adt_reduce[T: TYPE, range: TYPE]: THEORY
BEGIN

IMPORTING binary_tree_adt[T]

reduce(leaf?_fun: range, node?_fun: [[T, range, range] -> range]):
[binary_tree[T] -> range] =

LAMBDA (binary_tree_var: binary_tree[T]):
CASES binary_tree_var OF
leaf: leaf?_fun,
node(node1_var, node2_var, node3_var):

node?_fun(node1_var,
reduce(leaf?_fun,

node?_fun)(node2_var),
reduce(leaf?_fun,

node?_fun)(node3_var))
ENDCASES

14

END binary_tree_adt_reduce
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The theory binary tree adt reduce also contains the more flexible recursion combi-
nator REDUCE where the leaf? fun and node? fun functions take binary tree var as an
argument.

14REDUCE(leaf?_fun: [binary_tree[T] -> range], node?_fun:
[[T, range, range, binary_tree[T]] -> range]):

[binary_tree[T] -> range] =
LAMBDA (binary_tree_var: binary_tree[T]):
CASES binary_tree_var OF
leaf: leaf?_fun(binary_tree_var),
node(node1_var, node2_var, node3_var):

node?_fun(node1_var,
REDUCE(leaf?_fun,

node?_fun)(node2_var),
REDUCE(leaf?_fun,

node?_fun)(node3_var),
binary_tree_var)

ENDCASES

PVS 2 introduced certain extensions to the datatype mechanism that were absent in
PVS 1. These include a primitive subterm relation, the some, every, and map combinators,
and recursion through parameters of previously defined datatypes.

3.0.0.8 Subterm relation.

The primitive subterm relation is defined on datatype objects and checks whether one object
occurs as a (not necessarily proper) subterm of another object. This relation is defined as
subterm.

15subterm(x: binary_tree, y: binary_tree): boolean =
x = y
OR CASES y OF

leaf: FALSE,
node(node1_var, node2_var, node3_var):

subterm(x, node2_var) OR subterm(x, node3_var)
ENDCASES

The proper subterm relation is defined by <<. The proper subterm relation is useful as a
well-founded termination relation that can be given along with the measure for a recursively
defined function.
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16<<(x: binary_tree, y: binary_tree): boolean =
CASES y OF
leaf: FALSE,
node(node1_var, node2_var, node3_var):

(x = node2_var OR x << node2_var)
OR x = node3_var OR x << node3_var

ENDCASES

3.0.0.9 Well-foundedness.

The next axiom asserts that datatype objects are well-founded with respect to the proper
subterm relation. The induction axiom binary tree induction can be derived as a con-
sequence of the axiom binary tree well founded and the well-founded induction lemma
wf induction in the prelude.

17binary_tree_well_founded: AXIOM well_founded?[binary_tree](<<);

3.0.0.10 The every combinator.

The PVS typechecker generates the combinators every and some corresponding to the pos-
itive parameters of a datatype. For example, every checks if all values of this parameter
type in an instance of the datatype satisfy a given predicate on the parameter type. Fur-
thermore, if all the type parameters of a datatype are positive, then a map combinator is
also generated.

The every combinator in the theory binary tree adt takes a predicate p on the positive
type parameter T, and checks that every occurrence of an object of the type parameter in a
binary tree satisfies the predicate. The binary tree adt theory also contains a non-curried
variant of every that is written as every(p, a) instead of every(p)(a).

18every(p: PRED[T])(a: binary_tree): boolean =
CASES a OF
leaf: TRUE,
node(node1_var, node2_var, node3_var):

p(node1_var)
AND every(p)(node2_var) AND every(p)(node3_var)

ENDCASES

3.0.0.11 The some combinator.

The some combinator is the dual to every and checks that some occurrence of a value of
type T in the binary tree satisfies the given predicate.3

3For operations like some and every, PVS allows a notational convenience where (some! x: p(x)) is
shorthand for some(lambda x: p(x)).
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19some(p: PRED[T])(a: binary_tree): boolean =
CASES a OF
leaf: FALSE,
node(node1_var, node2_var, node3_var):

p(node1_var) OR some(p)(node2_var) OR some(p)(node3_var)
ENDCASES

3.0.0.12 The map combinator.

Finally, when all the type parameters of a datatype definition occur positively in the def-
inition, as is the case with binary tree, a theory binary tree adt map is generated that
defines the curried and non-curried versions of the map combinator. In addition to the
parameter T, binary tree adt map takes a range type parameter T1. The map combinator
applies a function f from T to T1 to every value of type T in a given binary tree[T] to
return a result of type binary tree[T1]. We omit the definition of the non-curried variant
of map.

20binary_tree_adt_map[T: TYPE, T1: TYPE]: THEORY
BEGIN

IMPORTING binary_tree_adt

map(f: [T -> T1])(a: binary_tree[T]): binary_tree[T1] =
CASES a OF
leaf: leaf[T1],
node(node1_var, node2_var, node3_var):

node[T1](f(node1_var),
map(f)(node2_var), map(f)(node3_var))

ENDCASES

END binary_tree_adt_map

In summary, the datatype mechanism accepts parametric recursive type definitions in
terms of constructors, accessors, and recognizers. The recursive occurrences of the datatype
must be positive. The typechecker generates recognizer subtypes, accessor-constructor ax-
ioms, extensionality axioms, a structural induction scheme, a subterm ordering relation,
and various recursion combinators. With respect to positively occurring type parameters,
the typechecker generates the some and every combinators. When all type parameters are
positive, the typechecker also generates a map combinator. We next examine the use of the
above theories formalizing binary trees in the definition of ordered binary trees.
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Chapter 4

Ordered Binary Trees

In ordered binary trees, the values in the nodes are ordered relative to each other: the value
at a node is no less than any of the values in the left subtree, and no greater than any of the
values in the right subtree. Such a data structure has many obvious uses since the values
are maintained in sorted form and the average time for looking up a value or inserting a
new value is logarithmic in the number of nodes.

The PVS specification of ordered binary trees is given in the theory obt below. It is
worth noting the use of theory parameters in this specification. The body of the theory obt
has been elided from the specification displayed below.

21obt [T : TYPE, <= : (total_order?[T])] : THEORY
BEGIN
IMPORTING binary_tree[T]

A, B, C: VAR binary_tree
x, y, z: VAR T
pp: VAR pred[T]
i, j, k: VAR nat

{definitions and lemmas shown below in~ 22 to~ 28 }

END obt

The theory obt takes the type T of the values kept in the binary tree as its first parameter.
Its second parameter is the total ordering used to order the binary tree. This parameter,
represented as <=, has the type (total order?[T]) consisting of those binary relations on
T that are total orderings, that is, those that are reflexive, transitive, antisymmetric, and
linear. Note that the type of the second parameter to this theory depends on the first
parameter T.

19
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We can now use the every combinator to define when a binary tree is ordered relative
to the theory parameter <=. This notion is captured by the predicate ordered? on binary
trees. Since ordered? will be defined by a direct recursion, its definition will need a measure
that demonstrates the termination of the recursion. In the definition of size below, the
recursion combinator reduce nat is used to count the number of value nodes in a given
binary tree. This function is defined to return 0 when given a leaf, and to increment the
sum of the sizes of the left and right subtrees by 1 when given a node.

22size(A) : nat =
reduce_nat(0, (LAMBDA x, i, j: i + j + 1))(A)

The recursive definition of ordered? shown below returns TRUE in the base case since
a leaf node is clearly an ordered tree by itself. In the recursive case, the definition ensures
that the left and right subtrees of the given tree A are themselves ordered. It also uses
every to check that all the values in the left subtree are no greater than the value val(A)
at A, and the values in the right subtree are no less than the value at A.

The measure size is used to demonstrate the termination of the recursion displayed by
ordered?. The proper subterm relation shown in 16 could also be used as a well-founded
relation in establishing the termination of ordered? by writing MEASURE A BY << (see 34 )
in place of MEASURE size.

23ordered?(A) : RECURSIVE bool =
(IF node?(A) THEN (every((LAMBDA y: y<=val(A)), left(A)) AND

every((LAMBDA y: val(A)<=y), right(A)) AND
ordered?(left(A)) AND
ordered?(right(A)))

ELSE TRUE ENDIF)
MEASURE size

When the above definition is typechecked, two proof obligations (TCCs) are generated
corresponding to the termination requirements for the two recursive calls. The first one
requires that the size of the left subtree of a binary tree A must be smaller than the size
of A. The second proof obligation requires that the size of the right subtree of A must
be smaller than the size of A. Note how the governing IF-THEN-ELSE condition and the
preceding conjuncts are included as antecedents in the proof obligations below.
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24ordered?_TCC1: OBLIGATION
(FORALL (A):

node?(A)
AND every((LAMBDA y: y <= val(A)), left(A))
AND every((LAMBDA y: val(A) <= y), right(A))

IMPLIES size(left(A)) < size(A));

ordered?_TCC2: OBLIGATION
(FORALL (v: [binary_tree[T] -> bool], A):

node?(A)
AND every((LAMBDA y: y <= val(A)), left(A))
AND every((LAMBDA y: val(A) <= y), right(A)) AND v(left(A))

IMPLIES size(right(A)) < size(A));

The PVS Emacs command M-x tc typechecks a file in PVS. The PVS Emacs command M-x
tcp can be used to both typecheck the file and attempt to prove the resulting TCCs using
the existing proof (if there is one) or a built-in strategy according to the source of the TCC
(subtype, termination, existence, assuming, etc.). As it turns out, the termination-tcc
strategy automatically proves both ordered? TCC1 and ordered? TCC2.

The next definition in the obt theory is that of the insert operation. The term
insert(x, A) returns that binary tree obtained by inserting the value x at the appro-
priate position in the binary tree A. The insert operation is also defined by recursion but
employs the CASES construct instead of the IF-THEN-ELSE conditional. In the base case,
when the argument A matches the term leaf, the binary tree containing the single value x
is returned as the result. In the recursion case, the argument A has the form node(y, B,
C), and if x is at most y according to the given total ordering on the type T, then we recon-
struct the node with value y, left subtree insert(x, B), and right subtree C. Otherwise,
we reconstruct the node with value y, left subtree B, and right subtree insert(x, C).

25insert(x, A): RECURSIVE binary_tree[T] =
(CASES A OF

leaf: node(x, leaf, leaf),
node(y, B, C): (IF x<=y THEN node(y, insert(x, B), C)

ELSE node(y, B, insert(x, C))
ENDIF)

ENDCASES)
MEASURE size(A)

When the above definition is typechecked, two termination proof obligations are
generated corresponding to the two recursive invocations of insert. Both proof obli-
gations insert TCC1 and insert TCC2 are automatically discharged by the default
termination-tcc strategy.
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26insert_TCC1: OBLIGATION
(FORALL (B: binary_tree[T], C: binary_tree[T], y: T, A, x):

A = node(y, B, C) AND x <= y IMPLIES size(B) < size(A));

insert_TCC2: OBLIGATION
(FORALL (B: binary_tree[T], C: binary_tree[T], y: T, A, x):

A = node(y, B, C) AND NOT x <= y IMPLIES size(C) < size(A))

The following lemma states an interesting property of insert. Its proof requires the
use of induction over binary trees. It asserts that if every value in the tree A has property
pp, and the value x also has property pp, then every value in the result of inserting x into
A has property pp.

27ordered?_insert_step: LEMMA
pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A))

The theorem ordered? insert asserts the important property of insert that it returns
an ordered binary tree when given an ordered binary tree.

28ordered?_insert: THEOREM
ordered?(A) IMPLIES ordered?(insert(x, A))

We examine some proofs of this theorem in Section 10.



Chapter 5

In-line and Enumeration Types

The example of binary trees illustrated how abstract datatypes can be declared as theories
(that are automatically expanded) within PVS. Abstract datatypes can be declared within
other theories as long as they do not employ any parameters. Note that PVS has type
parameterization only at the theory level and not at the declaration level. For example,
the type of combinators constructed out of the K and S combinators is captured by the
following declaration that can occur at the declaration level within a theory. The axioms
generated by the DATATYPE declaration can be viewed using the PVS Emacs command M-x
ppe.

29combinators : THEORY
BEGIN
combinators: DATATYPE

BEGIN
K: K?
S: S?
app(operator, operand: combinators): app?

END combinators

x, y, z: VAR combinators

reduces_to: PRED[[combinators, combinators]]

K: AXIOM reduces_to(app(app(K, x), y), x)
S: AXIOM reduces_to(app(app(app(S, x), y), z), app(app(x, z), app(y, z)))

END combinators

The most frequently used such in-line abstract datatypes are enumeration types. For
example, the type of colors consisting of red, white, and blue can given by the following
in-line datatype declaration.

23
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30colors: DATATYPE
BEGIN
red: red?
white: white?
blue: blue?

END colors

The above declaration is a rather verbose way of defining the type of colors. PVS pro-
vides an abbreviation mechanism that allows the above declaration to be expressed more
succinctly as shown below.

31colors: TYPE = {red, white, blue}

All of the axiomatized properties of such enumeration types are built into the PVS proof
checker as shown in the previous section so that no axioms about enumeration types need
ever be explicitly used.



Chapter 6

Disjoint Unions

The type constructor for the disjoint union of two types is popular enough to be included in
several languages. The disjoint union of two sets A and B is a set in which each element is
tagged according to whether it is from A or from B. It is easy to see that the type analogue
of the disjoint union operation can be defined using the DATATYPE mechanism of PVS as
shown below:

32disj_union[A, B: TYPE] : DATATYPE
BEGIN

inl(left : A): inl?
inr(right : B): inr?

END disj_union

The type disj union[nat, bool] then includes values such as inl(1) and inr(TRUE).
Rushby [Rus95] presents a toy compiler verification exercise [WW93] in PVS and

presents an extensive discussion of the use of disjoint unions in PVS specifications and
proofs.

25
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Chapter 7

Mutually Recursive Datatypes

Mutually recursive datatypes arise quite frequently in programming and specification. A
common example is that of a language definition where type expressions contain terms and
vice-versa. Mutually recursive type definitions are not directly admissible using the PVS
datatype mechanism. But most typical mutual recursive types can, in fact, be defined as a
single datatype in PVS with subtypes that group together classes of constructors. PVS 2 has
been extended to admit such datatypes with sub-datatypes. The example below describes
the class of arithmetic expressions that include numbers, sums, and conditional expressions
classified by the sub-datatype term, where the test component of a conditional expression
is a boolean expression classified by the subdatatype expr. Thus sub-datatypes are a way
of collecting together groups of constructors of a datatype that form one part of a mutually
recursive datatype definition. In the example below, boolean expressions are defined as
equalities between arithmetic expressions, and conditional arithmetic expressions contain
boolean subexpressions, so that arithmetic and boolean expressions are mutually recursive.

33arith: DATATYPE WITH SUBTYPES expr, term
BEGIN
num(n:int): num? :term
sum(t1:term,t2:term): sum? :term

% ...
eq(t1: term, t2: term): eq? :expr
ift(e: expr, t1: term, t2: term): ift? :term

% ...
END arith

The only restriction on the use of subdatatypes other than those listed in Section 2 is
that the sub-datatypes should be pairwise distinct and differ from the datatype itself. In
particular, sub-datatypes need not actually be used in which case they are empty. It is
possible to define mutual recursive types that lead to empty constructor subtypes such as if

27
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the eq constructor in the arith datatype was specified as eq(t1: expr, t2: expr): eq?
: expr.

An evaluator for such arithmetic/boolean expressions can be defined as eval whose
range type is a disjoint union of bool and int (according to whether the input expression
is of type expr or term. The function eval is therefore dependently typed to return values
of type (bool?) on inputs of type expr and values of type (int?) on inputs of type term.

34arith_eval: THEORY
BEGIN
IMPORTING arith

value: DATATYPE
BEGIN
bool(b:bool): bool?
int(i:int): int?
END value

eval(a: arith): RECURSIVE
{v: value | IF expr(a) THEN bool?(v) ELSE int?(v) ENDIF} =

CASES a OF
num(n): int(n),
sum(n1, n2): int(i(eval(n1)) + i(eval(n2))),
eq(n1, n2): bool(i(eval(n1)) = i(eval(n2))),
ift(e, n1, n2): IF b(eval(e)) THEN eval(n1) ELSE eval(n2) ENDIF
ENDCASES
MEASURE a BY <<

END arith_eval



Chapter 8

Lifting Subtyping on Recursive
Datatype Parameters

The datatype mechanism in PVS 2.0 had the limitation that though the type of nat of
natural numbers is a subtype of the type int of integers, the type list[nat] of lists over
the natural numbers is not a subtype of the type list[int] of lists over the integers. The
datatype mechanism in PVS 2.1 has been modified to lift such subtyping over positive
parameters to the corresponding abstract datatypes. In general, given a datatype D with a
positive type parameter, we have

D[{x: T | p(x)}] ≡ {d: D[T] | every(p)(d)}.

While cons[nat] is neither syntactically nor semantically identical to cons[int],
constructor applications involving cons[int] and cons[nat] such as cons[nat](0,
null[nat]) and cons[int](0, null[int]) are syntactically identical. Also, constructors
that are declared to have no accessors (e.g., null) are syntactically equal, so null[int] ≡
null[real], but null[int] and null[bool] belong to incompatible types.

In general, when a constructor, accessor, or recognizer occurs as an operator of an
application, the actual parameter is only used for testing compatibility. Note that the
actual parameter is not actually ignored. For example, the expression cons[nat](-1,
null) is not type correct and generates the unprovable proof obligation -1 > 0.

When multiple parameters are involved, only the positive ones satisfy the subtyping
equivalences given above. Thus in the datatype declaration

dt[t1, t2: TYPE, c: t1]: DATATYPE
BEGIN
b: b?
c(a1:[t1 -> t2], a2: dt): c?
END dt

29
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only t2 occurs positively, so dt[int, nat, 3] is a subtype of dt[int, int, 3], but bears
no relation to dt[nat, nat, 3] or to dt[int, nat, 2].



Chapter 9

Representations of Recursive
Ordinals

Ordinals are needed to provide lexicographic termination measures for recursive functions.
The Ackermann function provides a well known example of a doubly recursive function
that requires a lexicographic measure. Péter’s version [Pét67] of the Ackermann function is
defined in the theory ackermann as ack.

35ackermann: THEORY
BEGIN
i, j, k, m, n: VAR nat

ack(m,n): RECURSIVE nat =
(IF m=0 THEN n+1

ELSIF n=0 THEN ack(m-1,1)
ELSE ack(m-1, ack(m, n-1))

ENDIF)
MEASURE lex2(m, n)

...
END ackermann

The lexicographic termination measure for ack is computed by the function lex2 (see 39 )
which returns a representation for the ordinal in the lexicographic ordering. The ordinal
ε0 is the least ordinal x such that x = ωx, and therefore includes 0, 1, . . . , ω, ω + 1, . . . ω +
ω, . . . , 3 ∗ ω, . . . , ω2, . . . , ωω, . . . , ω.

.ω

, . . . . The sub-ε0 ordinals can be represented using the
Cantor normal form which asserts that to any non-zero ordinal α, there are n ordinals
α1, . . . , αn with α1 ≤ . . . ≤ αn < α, such that α = ωα1 + ωα2 + . . . + ωαn . We can make
this representation slightly more compact by adding natural number coefficients so that to
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any α, there are ordinals α1, . . . , αn such that α1 ≤ . . . ≤ αn < α, and natural numbers
c1, . . . , cn such that α = c1∗ωα1 +c2∗ωα2 +. . .+cn∗ωαn . It is easy to see that a lexicographic
measure can be given by n ∗ ω0 +m ∗ ω which is just n+m ∗ ω.

We now explain how the sub-ε0 ordinals are defined in the PVS prelude. We start by
defining an ordstruct datatype that represents ordinal-like structures.

36ordstruct: DATATYPE
BEGIN
zero: zero?
add(coef: posnat, exp: ordstruct, rest: ordstruct): nonzero?
END ordstruct

In intuitive terms, the ordinal represented by zero is 0, and the ordinal repre-
sented by add(c, alpha, beta) given by, say ordinal(add(c, alpha, beta)) is c ∗
ωordinal (alpha) + ordinal(beta). We can then define an ordering relation on ordstruct
terms as given by < in 37 . It compares add(i, u, v) against add(j, z, w) by either
recursively ensuring u < z, or checking that u is syntactically identical to z and either i <
j or i = j and recursively v < w.

37ordinals: THEORY
BEGIN
i, j, k: VAR posnat
m, n, o: VAR nat
u, v, w, x, y, z: VAR ordstruct
size: [ordstruct->nat] = reduce[nat](0, (LAMBDA i, m, n: 1 + m+n));

<(x, y): RECURSIVE bool =
CASES x OF

zero: NOT zero?(y),
add(i, u, v): CASES y OF

zero: FALSE,
add(j, z, w): (u<z) OR

(u=z) AND (i<j) OR
(u=z) AND (i=j) AND (v<w)

ENDCASES
ENDCASES

MEASURE size(x);

This is not quite the ordering relation we want since it will obviously only work for normal-
ized (and therefore, canonical) representations where the exponent ordinals appear in sorted
(decreasing) order. In particular, note that the use of syntactic identity on ordstruct terms
will not work unless the terms are in fact canonical representatives. It is easy to define a
predicate which identifies an ordstruct term as being in the required Cantor normal form
by defining a recursive predicate ordinal? as shown in 38 .
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38>(x, y): bool = y < x;
<=(x, y): bool = x < y OR x = y;
>=(x, y): bool = y < x OR y = x

ordinal?(x): RECURSIVE bool =
CASES x OF
zero: TRUE,
add(i, u, v): (ordinal?(u) AND ordinal?(v) AND

CASES v OF
zero: TRUE,
add(k, r, s): r < u

ENDCASES)
ENDCASES
MEASURE size

ordinal: NONEMPTY_TYPE = (ordinal?)

The definition of ordinal? checks add(i, u, v) to recursively ensure that u and v are
ordinals, and that in add(i, u, add(k, r, s)), we have r < u. This latter use of the
ordering relation is acceptable since we have already checked that r and u are proper normal
forms. The definition of lex2 is given in 39 . Note that add(n, zero, zero) represents n,
add(m, add(1, zero, zero), zero) represents m ∗ ω, and add(m, add(1,zero,zero),
add(n,zero, zero)) represents n+m ∗ ω.1

39lex2(m, n): ordinal =
(IF m=0

THEN IF n = 0
THEN zero
ELSE add(n, zero, zero)

ENDIF
ELSIF n = 0 THEN add(m, add(1,zero,zero),zero)
ELSE add(m, add(1,zero,zero), add(n,zero, zero))

ENDIF)

lex2_lt: LEMMA
lex2(i, j) < lex2(m, n) =
(i < m OR (i = m AND j < n))

Returning to the example of the Ackermann function in 35 , the measure lex2(m, n)
generates three termination TCCs corresponding to the three recursive invocations of the
function.

1The PVS CONVERSION mechanism can be used to gracefully embed the natural numbers into the ordinal

type by converting 0 to zero, and a positive number n to add(n, zero, zero).
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40ack_TCC2: OBLIGATION
(FORALL (m, n): NOT m = 0 AND n = 0
IMPLIES lex2(m - 1, 1) < lex2(m, n));

ack_TCC5: OBLIGATION
(FORALL (m, n):

NOT m = 0 AND NOT n = 0
IMPLIES lex2(m, n - 1) < lex2(m, n));

ack_TCC6: OBLIGATION
(FORALL (v: [[nat, naturalnumber] -> nat], m, n):

NOT m = 0 AND NOT n = 0
IMPLIES lex2(m - 1, v(m, n - 1)) < lex2(m, n));

All three TCCs are proved automatically by the default termination-tcc strategy.



Chapter 10

Some Illustrative Proofs about
Ordered Binary Trees

We present two proofs of ordered? insert shown in 28 . The second proof exhibits a
greater level of automation than the first proof. The first proof illustrates the various low-
level datatype related proof commands that are provided by PVS, and the second proof
illustrates how these commands can be combined to form more powerful and automatic
proof strategies. Strategies are similar to the tactics of the LCF [GMW79] family of proof
checkers.

10.1 A Low-level Proof

When we invoke M-x pr on ordered? insert, the theorem to be proved is displayed in
the *pvs* buffer, and we are prompted for an inference rule by the Rule? prompt. Since
the proof is by induction, the first step in the proof is the command (induct "A"). This
indicates that we wish to invoke the induct strategy with A as the induction variable. The
induction strategy finds the induction axiom corresponding to the datatype of A, instantiates
it suitably, and simplifies it to generate the base and induction cases. We are then presented
the base case of the proof. (The induction case can be displayed with the PVS Emacs
command M-x siblings.
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41ordered?_insert :
|-------

{1} (FORALL (A: binary_tree[T], x: T):
ordered?(A) IMPLIES ordered?(insert(x, A)))

Rule? (induct "A")
Inducting on A,
this yields 2 subgoals:
ordered?_insert.1 :
|-------

{1} (FORALL (x: T): ordered?(leaf) IMPLIES ordered?(insert(x, leaf)))

In the next step, we replace the universally quantified variable with a Skolem constant and
flatten the sequent by simplifying all top-level propositional connectives that are disjunctive
(i.e., negations, positive implications and disjunctions, and negative conjunctions).

42Rule? (skosimp)
Skolemizing and flattening,
this simplifies to:
ordered?_insert.1 :
{-1} ordered?(leaf)
|-------

{1} ordered?(insert(x!1, leaf))

The obvious step now is to open up the definitions of insert and ordered?. This is done
by two invocations of the expand rule.

43Rule? (expand "insert")
Expanding the definition of insert,
this simplifies to:
ordered?_insert.1 :
[-1] ordered?(leaf)
|-------

{1} ordered?(node(x!1, leaf, leaf))

Rule? (expand "ordered?")
Expanding the definition of ordered?,
this simplifies to:
ordered?_insert.1 :
|-------

{1} (every((LAMBDA (y: T): y <= x!1), leaf)
AND every((LAMBDA (y: T): x!1 <= y), leaf)
AND ordered?(leaf) AND ordered?(leaf))

The problem now is that all the occurrences of ordered? are expanded so that the an-
tecedent formula ordered?(leaf) reduces to TRUE and vanishes from the sequent. This
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formula in its unexpanded form is actually useful since it occurs in the consequent part
of the sequent. We could press on and expand ordered? once again or, alternatively, we
could undo this step of the proof and expand ordered? more selectively using the command
(expand "ordered?" +).

44Rule? (undo)
This will undo the proof to:
ordered?_insert.1 :
[-1] ordered?(leaf)
|-------

{1} ordered?(node(x!1, leaf, leaf))
Sure? (Y or N): y
ordered?_insert.1 :
[-1] ordered?(leaf)
|-------

{1} ordered?(node(x!1, leaf, leaf))

Rule? (expand "ordered?" +)
Expanding the definition of ordered?,
this simplifies to:
ordered?_insert.1 :
[-1] ordered?(leaf)
|-------

{1} (every((LAMBDA (y: T): y <= x!1), leaf)
AND every((LAMBDA (y: T): x!1 <= y), leaf)
AND ordered?(leaf) AND ordered?(leaf))

Now an invocation of assert eliminates the occurrences of the subformula ordered?(leaf)
in the consequent since it appears in the antecedent. Expanding every then completes the
base case of the proof without any further work.
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45Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
this simplifies to:
ordered?_insert.1 :
[-1] ordered?(leaf)
|-------

{1} (every((LAMBDA (y: T): y <= x!1), leaf)
AND every((LAMBDA (y: T): x!1 <= y), leaf))

Rule? (expand "every")
Expanding the definition of every,
this simplifies to:
ordered?_insert.1 :
[-1] ordered?(leaf)
|-------

{1} TRUE
which is trivially true.
This completes the proof of ordered?_insert.1.

Having completed the base case of the proof, we are left with the induction case. Our
first step here is to apply the rule skosimp*. This is a strategy that repeatedly performs
a skolem! followed by a flatten until nothing changes, i.e., it is an iterated form of the
skosimp command.
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46ordered?_insert.2 :
|-------

{1} (FORALL (node1_var: T, node2_var: binary_tree[T],
node3_var: binary_tree[T]):

(FORALL (x: T):
ordered?(node2_var) IMPLIES ordered?(insert(x, node2_var)))
AND

(FORALL (x: T):
ordered?(node3_var) IMPLIES ordered?(insert(x, node3_var)))
IMPLIES

(FORALL (x: T):
ordered?(node(node1_var, node2_var, node3_var))

IMPLIES
ordered?(insert(x, node(node1_var, node2_var, node3_var)))))

Rule? (skosimp*)
Repeatedly Skolemizing and flattening,
this simplifies to:
ordered?_insert.2 :
{-1} (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
{-2} (FORALL (x: T):

ordered?(node3_var!1) IMPLIES ordered?(insert(x, node3_var!1)))
{-3} ordered?(node(node1_var!1, node2_var!1, node3_var!1))
|-------

{1} ordered?(insert(x!1, node(node1_var!1, node2_var!1, node3_var!1)))

Now we have a subgoal sequent in which the induction hypotheses are the formulas number
-1 and -2, and the induction conclusion formulas are numbered -3 and 1. We clearly need
to expand the definitions of insert and ordered? in the induction conclusion. We first
expand insert and then propositionally simplify the resulting IF-THEN-ELSE expression as
shown below.
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47Rule? (expand "insert" +)
Expanding the definition of insert,
this simplifies to:
ordered?_insert.2 :
[-1] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-2] (FORALL (x: T):

ordered?(node3_var!1) IMPLIES ordered?(insert(x, node3_var!1)))
[-3] ordered?(node(node1_var!1, node2_var!1, node3_var!1))
|-------

{1} IF x!1 <= node1_var!1
THEN ordered?(node(node1_var!1, insert(x!1, node2_var!1), node3_var!1))

ELSE ordered?(node(node1_var!1, node2_var!1, insert(x!1, node3_var!1)))
ENDIF

Rule? (prop)
Applying propositional simplification,
this yields 2 subgoals:
ordered?_insert.2.1 :
{-1} x!1 <= node1_var!1
[-2] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-3] (FORALL (x: T):

ordered?(node3_var!1) IMPLIES ordered?(insert(x, node3_var!1)))
[-4] ordered?(node(node1_var!1, node2_var!1, node3_var!1))
|-------

{1} ordered?(node(node1_var!1, insert(x!1, node2_var!1), node3_var!1))

The propositional simplification step generates two subgoals according to whether the recur-
sive invocation of insert is on the left or the right subtree. We first consider the insertion
into the left subtree given by subgoal ordered? insert.2.1. We can instantiate the in-
duction hypothesis numbered -2 by applying the inst? command which uses syntactic
matching to find instantiating terms for the universally quantified variable in -2.
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48Rule? (inst?)
Found substitution:
x gets x!1,
Instantiating quantified variables,
this simplifies to:
ordered?_insert.2.1 :
[-1] x!1 <= node1_var!1
{-2} ordered?(node2_var!1) IMPLIES ordered?(insert(x!1, node2_var!1))
[-3] (FORALL (x: T):

ordered?(node3_var!1) IMPLIES ordered?(insert(x, node3_var!1)))
[-4] ordered?(node(node1_var!1, node2_var!1, node3_var!1))
|-------

[1] ordered?(node(node1_var!1, insert(x!1, node2_var!1), node3_var!1))

The next step is to expand the definition of ordered? in the induction conclusion. Note
that the second argument to the expand proof command is a list of the formula numbers
where the expansion is to be performed. It makes the proof considerably less robust if it
explicitly mentions such formula numbers, though this can be unavoidable in some cases.1

49Rule? (expand "ordered?" (-4 1))
Expanding the definition of ordered?,
this simplifies to:
ordered?_insert.2.1 :
[-1] x!1 <= node1_var!1
[-2] ordered?(node2_var!1) IMPLIES ordered?(insert(x!1, node2_var!1))
[-3] (FORALL (x: T):

ordered?(node3_var!1) IMPLIES ordered?(insert(x, node3_var!1)))
{-4} (every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)

AND every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
AND ordered?(node2_var!1) AND ordered?(node3_var!1))

|-------
{1} (every((LAMBDA (y: T): y <= node1_var!1), insert(x!1, node2_var!1))

AND every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
AND ordered?(insert(x!1, node2_var!1)) AND ordered?(node3_var!1))

Applying propositional simplification prop to the resulting subgoal generates two fur-
ther subgoals. The first of these is easily proved by rewriting using the lemma
ordered? insert step. Note that this is a conditional rewrite rule and has the form
A ⊃ B, where the rewriting given by B can be applied to a matching instance σ(B) only
when the corresponding σ(A) (the condition) is provable. The rewrite proof strategy at-
tempts to discharge these conditions automatically, and any undischarged conditions are
generated as subgoals.

1PVS is currently being enhanced to allow labels to be introduced for sequent formulas so that formula
selection in the PVS proof commands can be done with labels as an alternative to formula numbers.
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50Rule? (prop)
Applying propositional simplification,
this simplifies to:
ordered?_insert.2.1 :
{-1} ordered?(insert(x!1, node2_var!1))
[-2] x!1 <= node1_var!1
[-3] (FORALL (x: T):

ordered?(node3_var!1) IMPLIES ordered?(insert(x, node3_var!1)))
{-4} every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
{-5} every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
{-6} ordered?(node2_var!1)
{-7} ordered?(node3_var!1)
|-------

{1} every((LAMBDA (y: T): y <= node1_var!1), insert(x!1, node2_var!1))

Rule? (rewrite "ordered?_insert_step")
Found matching substitution:
A gets node2_var!1,
x gets x!1,
pp gets (LAMBDA (y: T): y <= node1_var!1),
Rewriting using ordered?_insert_step,
This completes the proof of ordered?_insert.2.1.

We have now completed the part of the proof corresponding to the insertion into the
left subtree. Next, we proceed to the case when the insert operation is applied to the right
subtree. This case is similar to the proof of ordered? insert.2.1.

51ordered?_insert.2.2 :
[-1] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-2] (FORALL (x: T):

ordered?(node3_var!1) IMPLIES ordered?(insert(x, node3_var!1)))
[-3] ordered?(node(node1_var!1, node2_var!1, node3_var!1))
|-------

{1} x!1 <= node1_var!1
{2} ordered?(node(node1_var!1, node2_var!1, insert(x!1, node3_var!1)))

As in 48 earlier, we apply the step inst?.
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52Rule? (inst?)
Found substitution:
x gets x!1,
Instantiating quantified variables,
this simplifies to:
ordered?_insert.2.2 :
{-1} ordered?(node2_var!1) IMPLIES ordered?(insert(x!1, node2_var!1))
[-2] (FORALL (x: T):

ordered?(node3_var!1) IMPLIES ordered?(insert(x, node3_var!1)))
[-3] ordered?(node(node1_var!1, node2_var!1, node3_var!1))
|-------

[1] x!1 <= node1_var!1
[2] ordered?(node(node1_var!1, node2_var!1, insert(x!1, node3_var!1)))

It however instantiates the formula -1 which is not the appropriate induction hypothesis
for the right branch. To apply the inst? step with greater selectivity, we undo the last step
and supply a further argument to inst? indicating the number of the quantified formula
to be instantiated.

53Rule? (inst? -2)
Found substitution:
x gets x!1,
Instantiating quantified variables,
this simplifies to:
ordered?_insert.2.2 :
[-1] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
{-2} ordered?(node3_var!1) IMPLIES ordered?(insert(x!1, node3_var!1))
[-3] ordered?(node(node1_var!1, node2_var!1, node3_var!1))
|-------

[1] x!1 <= node1_var!1
[2] ordered?(node(node1_var!1, node2_var!1, insert(x!1, node3_var!1)))

Now, as before, we expand the definition of ordered? in the induction conclusion formulas
-3 and 2.
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54Rule? (expand "ordered?" (-3 2))
Expanding the definition of ordered?,
this simplifies to:
ordered?_insert.2.2 :
[-1] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-2] ordered?(node3_var!1) IMPLIES ordered?(insert(x!1, node3_var!1))
{-3} (every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)

AND every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
AND ordered?(node2_var!1) AND ordered?(node3_var!1))

|-------
[1] x!1 <= node1_var!1
{2} (every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)

AND
every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))

AND ordered?(node2_var!1) AND ordered?(insert(x!1, node3_var!1)))

Propositional simplification yields a single goal sequent.

55Rule? (prop)
Applying propositional simplification,
this simplifies to:
ordered?_insert.2.2 :
{-1} ordered?(insert(x!1, node3_var!1))
[-2] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
{-3} every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
{-4} every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
{-5} ordered?(node2_var!1)
{-6} ordered?(node3_var!1)
|-------

{1} every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))
[2] x!1 <= node1_var!1

As before, we attempt to rewrite the formula 1 using the lemma ordered? insert step,
but as shown in 56 , this does not terminate the current branch of the proof.
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56Rule? (rewrite "ordered?_insert_step")
Found matching substitution:
A gets node3_var!1,
x gets x!1,
pp gets (LAMBDA (y: T): node1_var!1 <= y),
Rewriting using ordered?_insert_step,
this simplifies to:
ordered?_insert.2.2 :
[-1] ordered?(insert(x!1, node3_var!1))
[-2] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-3] every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
[-4] every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
[-5] ordered?(node2_var!1)
[-6] ordered?(node3_var!1)
|-------

{1} node1_var!1 <= x!1
[2] every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))
[3] x!1 <= node1_var!1

We are left with having to discharge one of the conditions of the rewrite rule, namely
node1 var!1 <= x!1. This follows from the other consequent formula x!1 <= node1 var!1
and the observation that <= here is a linear ordering. The proof now requires that the type
information of <= be made explicit using the typepred command.

57Rule? (typepred "<=")
<= does not uniquely resolve - one of:
obt.<= : (total_order?[T]),
reals.<= : [[real, real] -> bool],
ordinals.<= : [[ordstruct, ordstruct] -> bool]

Restoring the state.
ordered?_insert.2.2 :
[-1] ordered?(insert(x!1, node3_var!1))
[-2] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-3] every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
[-4] every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
[-5] ordered?(node2_var!1)
[-6] ordered?(node3_var!1)
|-------

{1} node1_var!1 <= x!1
[2] every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))
[3] x!1 <= node1_var!1
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However, the command (typepred "<=") does not succeed since the typechecker is un-
able to resolve among the many possible references for <=. The more explicit command
(typepred "obt.<=") does succeed.2

58Rule? (typepred "obt.<=")
Adding type constraints for obt.<=,
this simplifies to:
ordered?_insert.2.2 :
{-1} total_order?[T](obt.<=)
[-2] ordered?(insert(x!1, node3_var!1))
[-3] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-4] every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
[-5] every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
[-6] ordered?(node2_var!1)
[-7] ordered?(node3_var!1)
|-------

[1] node1_var!1 <= x!1
[2] every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))
[3] x!1 <= node1_var!1

We then expand the definition of total order?.

59Rule? (expand "total_order?")
Expanding the definition of total_order?,
this simplifies to:
ordered?_insert.2.2 :
{-1} partial_order?(obt.<=) & dichotomous?(obt.<=)
[-2] ordered?(insert(x!1, node3_var!1))
[-3] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-4] every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
[-5] every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
[-6] ordered?(node2_var!1)
[-7] ordered?(node3_var!1)
|-------

[1] node1_var!1 <= x!1
[2] every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))
[3] x!1 <= node1_var!1

Applying flatten removes the conjunction in -1.
2Note that in PVS 2.1, the typechecking of input expressions to proof commands automatically resolves

such ambiguities in favor of expressions occurring in the goal sequent. Thus, this ambiguity is no longer
reported.
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60Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
ordered?_insert.2.2 :
{-1} partial_order?(obt.<=)
{-2} dichotomous?(obt.<=)
[-3] ordered?(insert(x!1, node3_var!1))
[-4] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-5] every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
[-6] every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
[-7] ordered?(node2_var!1)
[-8] ordered?(node3_var!1)
|-------

[1] node1_var!1 <= x!1
[2] every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))
[3] x!1 <= node1_var!1

Expanding the definition of dichotomous? yields the needed linearity property of the or-
dering relation.

61Rule? (expand "dichotomous?")
Expanding the definition of dichotomous?,
this simplifies to:
ordered?_insert.2.2 :
[-1] partial_order?(obt.<=)
{-2} (FORALL (x: T), (y: T): (obt.<=(x, y) OR obt.<=(y, x)))
[-3] ordered?(insert(x!1, node3_var!1))
[-4] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-5] every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
[-6] every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
[-7] ordered?(node2_var!1)
[-8] ordered?(node3_var!1)
|-------

[1] node1_var!1 <= x!1
[2] every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))
[3] x!1 <= node1_var!1

When this linearity property is heuristically instantiated, we get a tautologous subgoal that
is polished off with prop, thus completing the proof.
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62Rule? (inst?)
Found substitution:
y gets x!1,
x gets node1_var!1,
Instantiating quantified variables,
this simplifies to:
ordered?_insert.2.2 :
[-1] partial_order?(obt.<=)
{-2} (obt.<=(node1_var!1, x!1) OR obt.<=(x!1, node1_var!1))
[-3] ordered?(insert(x!1, node3_var!1))
[-4] (FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!1)))
[-5] every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
[-6] every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
[-7] ordered?(node2_var!1)
[-8] ordered?(node3_var!1)
|-------

[1] node1_var!1 <= x!1
[2] every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))
[3] x!1 <= node1_var!1
Rule? (prop)
Applying propositional simplification,
This completes the proof of ordered?_insert.2.2.
This completes the proof of ordered?_insert.2.
Q.E.D.
Run time = 12.32 secs.
Real time = 1916.88 secs.

The above exercise illustrates several aspects of PVS proofs of theorems involving
abstract datatypes. The induct strategy automatically employs the datatype induction
scheme. Most of the datatype axioms need never be explicitly invoked in a proof — the
above proof does not mention any datatype axioms.

More general lessons about PVS are also illustrated by the above exercise. Primary
among these are the use of undo to backtrack in a proof, the use of expand and rewrite to
rewrite using definitions and rewrite rules, assert to simplify using the decision procedures
and the assertions in the sequent, and inst? to heuristically instantiate a suitably quantified
variable using matching.

We now examine a more automated proof of the same theorem.

10.2 A Semi-automated Proof

We can now retry the proof of the theorem ordered? insert using a more high-level strat-
egy defined in PVS. This strategy is called induct-and-simplify. It applies the induct
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strategy and then tries to complete the proof by repeatedly skolemizing and instantiating
quantifiers, and applying the decision procedures, rewrite rules, and propositional simplifi-
cation. We employ as rewrite rules, the lemma ordered? insert step and any definitions
used directly or indirectly in the statement of the theorem. The script shown below has
been automatically generated from the induct-and-simplify command up to the subgoal
in 66 . The first segment of the proof shows the setting up of the rewrite rules mentioned
in the induct-and-simplify command.

63ordered?_insert :
|-------

{1} (FORALL (A: binary_tree[T], x: T):
ordered?(A) IMPLIES ordered?(insert(x, A)))

Rule? (induct-and-simplify "A" :rewrites "ordered?_insert_step")

The internal steps of the strategy are not displayed but any applications of rewrite rules
are indicated in the proof commentary. This rewriting commentary can be turned off using
the proof command (rewrite-msg-off) or controlled using the PVS Emacs command M-x
set-rewrite-depth. The rewriting in the base case is shown below in 64 .

64ordered? rewrites ordered?(leaf)
to TRUE

insert rewrites insert(x!1, leaf)
to node(x!1, leaf, leaf)

every rewrites every((LAMBDA (y: T): y <= x!1), leaf)
to TRUE

every rewrites every((LAMBDA (y: T): x!1 <= y), leaf)
to TRUE

ordered? rewrites ordered?(node(x!1, leaf, leaf))
to TRUE

The rewriting steps occurring in the induction case are shown in 65
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65ordered? rewrites ordered?(node(node1_var!1, node2_var!1, node3_var!1))
to (every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)

AND every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
AND ordered?(node2_var!1) AND ordered?(node3_var!1))

insert rewrites insert(x!1, node(node1_var!1, node2_var!1, node3_var!1))
to (IF x!1 <= node1_var!1

THEN node(node1_var!1, insert(x!1, node2_var!1), node3_var!1)
ELSE node(node1_var!1, node2_var!1, insert(x!1, node3_var!1))
ENDIF)

ordered? rewrites
ordered?(node(node1_var!1, insert(x!1, node2_var!1), node3_var!1))
to (every((LAMBDA (y: T): y <= node1_var!1), insert(x!1, node2_var!1))

AND every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
AND ordered?(insert(x!1, node2_var!1)) AND ordered?(node3_var!1))

ordered? rewrites
ordered?(node(node1_var!1, node2_var!1, insert(x!1, node3_var!1)))
to (every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)

AND
every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))

AND ordered?(node2_var!1) AND ordered?(insert(x!1, node3_var!1)))
ordered?_insert_step rewrites
every((LAMBDA (y: T): y <= node1_var!1), insert(x!1, node2_var!1))
to TRUE

One subgoal results from the induct-and-simplify command as shown in 66 . This sub-
goal is nearly the same as subgoal ordered? insert.2.2 in 55 from the previous proof
attempt. This means that the induct-and-simplify strategy completed the base case and
most of the induction branch of the proof automatically. The subgoal in 66 corresponds to
the case of insertion into the right subtree. The strategy failed to complete this branch of the
proof because it was unable to apply the rewrite rule ordered? insert step automatically.
This application failed because one of the conditions of the rewrite rule, node1 var!1 <=
x!1, could not be discharged. This condition follows from formula number 1 in 66 and the
linearity of the <= relation. The latter constraint is, however, buried in the type constraint
(total order?) of <=. This information has to be made explicit before the proof can be
successfully completed.
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66By induction on A, and by repeatedly rewriting and simplifying,
this simplifies to:
ordered?_insert :
{-1} ordered?(insert(node1_var!1, node2_var!1))
{-2} ordered?(insert(x!1, node3_var!1))
{-3} every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
{-4} every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
{-5} ordered?(node2_var!1)
{-6} ordered?(node3_var!1)
|-------

{1} x!1 <= node1_var!1
{2} every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))

The rest of proof can be completed interactively as in the previous proof attempt but
we attempt a slightly different sequence of steps this time. The first step is identical to that
in 56 where the ordered? insert step lemma is manually invoked as a rewrite rule using
the rewrite strategy.

67Rule? (rewrite "ordered?_insert_step")
Found matching substitution:
A gets node3_var!1,
x gets x!1,
pp gets (LAMBDA (y: T): node1_var!1 <= y),
Rewriting using ordered?_insert_step,
this simplifies to:
ordered?_insert :
[-1] ordered?(insert(node1_var!1, node2_var!1))
[-2] ordered?(insert(x!1, node3_var!1))
[-3] every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
[-4] every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
[-5] ordered?(node2_var!1)
[-6] ordered?(node3_var!1)
|-------

{1} node1_var!1 <= x!1
[2] x!1 <= node1_var!1
[3] every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))

The next step is also identical to that of 58 where the type constraints for the <= operator
are explicitly introduced into the sequent.
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68Rule? (typepred "obt.<=")
Adding type constraints for obt.<=,
this simplifies to:
ordered?_insert :
{-1} total_order?[T](obt.<=)
[-2] ordered?(insert(node1_var!1, node2_var!1))
[-3] ordered?(insert(x!1, node3_var!1))
[-4] every((LAMBDA (y: T): y <= node1_var!1), node2_var!1)
[-5] every((LAMBDA (y: T): node1_var!1 <= y), node3_var!1)
[-6] ordered?(node2_var!1)
[-7] ordered?(node3_var!1)
|-------

[1] node1_var!1 <= x!1
[2] x!1 <= node1_var!1
[3] every((LAMBDA (y: T): node1_var!1 <= y), insert(x!1, node3_var!1))

The main difference from the previous proof attempt is that we now invoke a somewhat
powerful variant of the all-purpose grind strategy where the :if-match flag is set to all
indicating that all matching instances of any quantified formulas are to be used. If we
do not supply this option, the heuristic instantiator picks the wrong instance since the
type constraints for <= themselves provide matching instances for the one relevant type
constraint, namely, dichotomous?(obt.<=).
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69Rule? (grind :if-match all)

reflexive? rewrites reflexive?(obt.<=)
to FORALL (x: T): obt.<=(x, x)

transitive? rewrites transitive?(obt.<=)
to FORALL (x: T), (y: T), (z: T): obt.<=(x, y) & obt.<=(y, z) => obt.<=(x, z)

preorder? rewrites preorder?(obt.<=)
to FORALL (x: T): obt.<=(x, x)

& FORALL (x: T), (y: T), (z: T):
obt.<=(x, y) & obt.<=(y, z) => obt.<=(x, z)

antisymmetric? rewrites antisymmetric?(obt.<=)
to FORALL (x: T), (y: T): obt.<=(x, y) & obt.<=(y, x) => x = y

partial_order? rewrites partial_order?(obt.<=)
to (FORALL (x: T): obt.<=(x, x)

& FORALL (x: T), (y: T), (z: T):
obt.<=(x, y) & obt.<=(y, z) => obt.<=(x, z))
& FORALL (x: T), (y: T): obt.<=(x, y) & obt.<=(y, x) => x = y

dichotomous? rewrites dichotomous?(obt.<=)
to (FORALL (x: T), (y: T): (obt.<=(x, y) OR obt.<=(y, x)))

total_order? rewrites total_order?[T](obt.<=)
to ((FORALL (x: T): obt.<=(x, x)

& FORALL (x: T), (y: T), (z: T):
obt.<=(x, y) & obt.<=(y, z) => obt.<=(x, z))

& FORALL (x: T), (y: T): obt.<=(x, y) & obt.<=(y, x) => x = y)
& (FORALL (x: T), (y: T): (obt.<=(x, y) OR obt.<=(y, x)))

Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.
Run time = 48.86 secs.
Real time = 230.49 secs.

The above semi-automated proof attempt illustrates the power that is gained from
combining high-level strategies (e.g., induct-and-simplify and grind) to handle the easy
portions of a proof with low-level manual interaction to carry out the more delicate steps.
Note that the inner workings of these strategies which are hidden in the above proof can
be observed by invoking them with a $ suffix as in induct-and-simplify$ and grind$.

The proofs of the lemmas ordered? insert step in 27 and search insert shown
in 70 below can be completed automatically by the single command:

(induct-and-simplify "A")
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70search(x, A): RECURSIVE bool =
(CASES A OF
leaf: FALSE,
node(y, B, C): (IF x = y THEN TRUE

ELSIF x<=y THEN search(x, B)
ELSE search(x, C)

ENDIF)
ENDCASES)

MEASURE size(A)

search_insert: THEOREM search(y, insert(x, A)) = (x = y OR search(y, A))

10.3 Proof Status

To conclude the development of binary trees and ordered binary trees, we can apply the
PVS Emacs command M-x prt to recheck all the proofs and print out the proof status.3

The output of this command is shown below. It indicates that not only have all the theorems
been proved but so have any non-axioms (lemmas, TCCs, etc.) used in any of these proofs.

71Proof summary for theory obt
ordered?_TCC1..........................................proved - complete
ordered?_TCC2..........................................proved - complete
insert_TCC1............................................proved - complete
insert_TCC2............................................proved - complete
ordered?_insert_step...................................proved - complete
ordered?_insert........................................proved - complete
search_insert..........................................proved - complete
Theory totals: 7 formulas, 7 attempted, 7 succeeded.

3The command M-x status-proof-theory or M-x spt can be used to get the proof status without
rechecking the proofs.
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Built-in Datatype Simplifications

As indicated at the outset, the primary advantage of using abstract datatypes in PVS is
that a lot of knowledge about such datatypes and their operations is built into the system.
To illustrate the sort of datatype simplifications that are built into PVS, consider the theory
binary props shown below.
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72binary_props[T : TYPE] : THEORY

BEGIN
IMPORTING binary_tree_adt[T]
A, B, C, D: VAR binary_tree[T]
x, y, z: VAR T

leaf_leaf : LEMMA leaf?(leaf)
node_node : LEMMA node?(node(x, B, C))

leaf_leaf1: LEMMA A = leaf IMPLIES leaf?(A)

node_node1: LEMMA A = node(x, B, C) IMPLIES node?(A)

val_node: LEMMA val(node(x, B, C)) = x

leaf_node: LEMMA NOT (leaf?(A) AND node?(A))

node_leaf: LEMMA leaf?(A) OR node?(A)

leaf_ext: LEMMA (FORALL (A, B: (leaf?)): A = B)

node_ext: LEMMA (FORALL (A : (node?)) :
node(val(A), left(A), right(A)) = A)

END binary_props

All the lemmas excluding the last one, node ext, are provable by the command (then
(skosimp)(assert)). This means that the assert rule builds in several simplifications. In
the case of leaf leaf and node node, assert can reduce the application of a recognizer to a
constructor expression to either TRUE or FALSE. In the case of leaf leaf1 and node node1,
it even can do this simplification across an equality. The reason for this simplification is
that subtype information is asserted to the decision procedures so that when A = node(x,
B, C) is asserted to the decision procedures, so is node?(node(x, B, C)), and node?(A) is
deduced by congruence closure in the decision procedures. The simplifications in leaf leaf
and node node, but not leaf leaf1 and node node1, can also be carried out by the PVS
beta-reduction rule beta since this rule does not make use of equality information.

The lemma val node illustrates that the application of an accessor to a constructor
expression yields the appropriate field of the constructor expression. This simplification
can also be done by the beta rule.

The simplification implicit in leaf node is more subtle and captures the exclusivity
property of abstract datatypes. Here, from an antecedent formula leaf?(A), assert is
able to simplify the expression node?(A) to FALSE since no datatype expression can satisfy



Built-in Datatype Simplifications 57

two recognizers. The simplification implicit in node leaf captures the inclusivity property
of abstract datatypes. Here, assert is able to determine that a recognizer holds of an
expression by demonstrating that all the other recognizers are false on the expression. In
general, when confronted with the application of a recognizer r to a datatype expression e,
the simplifier evaluates the truth value of each recognizer of that datatype when applied to
the given expression using the decision procedures. If r(e) is determined to be TRUE by the
decision procedures, then r(e) is obviously simplified to TRUE by the simplifier. If for some
other recognizer r′, r′(e) is determined to be TRUE by the decision procedures, then r(e) is
simplified to FALSE. If for all recognizers r′ distinct from r, r′(e) is determined to be FALSE,
then r(e) is simplified to TRUE.

The lemma leaf ext essentially illustrates that for constructors such as leaf that have
no accessors, there is no distinction between the forms leaf?(A) and A = leaf. It also
illustrates how the subtype information is used implicitly to simplify A = B to TRUE.

The lemma node ext is the only one that cannot be proved by the command (then
(skosimp)(assert)). Here, this command simplifies the goal sequent to a single sub-
goal that is then proved by means of the (apply-extensionality) command. This il-
lustrates that the extensionality axiom for datatypes is built into the primitive PVS rule
extensionality and is also employed by the strategies replace-extensionality and
apply-extensionality.
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Chapter 12

Some Proof Strategies

We briefly explain the definitions of the proof strategies induct-and-simplify and
grind that were used in Section 10. The PVS manuals [OSRSC98] provides more de-
tails. These strategies are quite useful for proofs of datatype-related theorems. The
induct-and-simplify strategy takes an argument list of the form:

(var &optional (fnum 1) name (defs t) (if-match best)
theories rewrites exclude)

where

• var is the induction variable and is the only required argument

• fnum is the formula number of the induction formula where the induction variable is
universally quantified; it defaults to 1

• name names the induction scheme to be employed

• defs indicates which definitions of constants used in the current goal are to be installed
as rewrite rules; it defaults to t indicating that all relevant definitions must be installed

• if-match instructs the heuristic instantiator to use none, one, all, or the best matching
instantiation for a quantified formula; it defaults to best

• theories is the list of theories to be installed as rewrite rules

• rewrites is the list of formulas or definitions that are to be installed as rewrite rules,
and

• exclude is a list of formulas or definitions that should be removed from the rewrite
rule base
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The body of the definition of the strategy has the form:

(then
(install-rewrites$ :defs defs :theories theories :rewrites rewrites
:exclude exclude)
(try (induct var fnum name)
(then (skosimp*) (assert) (repeat (lift-if))
(repeat*
(then (assert) (bddsimp) (skosimp*)
(if if-match (inst? :if-match if-match) (skip)) (lift-if))))

(skip)))

The induct-and-simplify strategy first installs the rewrites using install-rewrites$
on defs, theories, rewrites, and exclude. It then introduces the appropriate instance
of the induction scheme using induct. Then the strategy carries out one round of skolem-
ization (introduction of new constants for outermost universally bound variables) using
skosimp*, rewriting and simplification using assert, and repeated lifting of condition-
als to the top level using lift-if. Following this, there are repeated rounds of rewrit-
ing/simplification, propositional simplification, skolemization, heuristic instantiation, and
if-lifting until each resulting subgoal has stabilized.

The grind strategy is similar. It takes the following argument list:

(&optional (defs !) theories rewrites exclude (if-match t) (updates? t))

where the only new argument from induct-and-simplify is updates? which when set to
NIL blocks the if-lifting of update applications of the form (A WITH [(i) := b])(j) to
(IF i = j THEN b ELSE A(j) ENDIF).

The body of the definition of grind is:

(then
(install-rewrites$ :defs defs :theories theories :rewrites rewrites
:exclude exclude)
(then (bddsimp) (assert)) (replace*)
(reduce$ :if-match if-match :updates? updates?))

Here the rewrite rules are installed using install-rewrites$, and followed by propo-
sitional simplification, rewriting and simplification, equality replacement, followed by re-
peated applications of these steps along with heuristic instantiation and if-lifting.

It should be clear from the above definition that it is fairly straightforward to write
powerful proof strategies using the constructs provided by the PVS proof checker.



Chapter 13

Limitations of the PVS Abstract
Datatype Mechanism

The abstract datatype mechanism of PVS is intended to capture a fairly large class of
datatypes whose axioms can be easily and systematically generated. This class contains all
the freely generated term algebras over an order-sorted signature which includes the various
stack and tree-like data structures. It excludes such important datatypes as integers (which
are built into PVS), bags, sets, and queues. It also excludes various lazy data structures
such as lazy lists or streams. These latter structures can be introduced by implementing a
similar mechanism for introducing co-datatypes as for datatypes.

The DATATYPE mechanism is a primitive construct of PVS and is not merely a defini-
tional extension of PVS. It therefore has the disadvantage that it is not possible to prove
general theorems about all recursive datatypes in the way that one can about all inductive
definitions given as least fixed points. For example, Bird’s fusion theorem [Bir95] cannot
be uniformly proved for all recursive datatypes and has to be proved for each datatype
individually [Sha96].
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Chapter 14

Related Work

There are a number of algebraic specification languages such as Larch [GJMW93],
OBJ [FGJM85], and ACT-ONE [EM85] that can be used to specify abstract datatypes
but these specifications are manually axiomatized and not automatically generated from a
succinct description as is the case with the PVS DATATYPE construct. The axioms are used
as rewrite rules so that there is no built-in automation of the simplification of datatype
expressions.

The programming language ML [MTH90] has a similar recursive datatype mechanism.
Unlike the PVS mechanism, the ML construct allows arbitrary forms of recursion. As noted
earlier, such recursive type definitions do not always have a proper set-theoretic semantics.
Gunter [Gun93] explains how certain recursive datatypes that are admissible in ML can
lead to unsoundnesses if admitted into a higher-order logic.

The HOL system has a mechanism for defining abstract datatypes [Mel89] that is some-
what more restrictive than that of PVS: there are more constraints on recursion and HOL
lacks the useful notion of subtyping that is available in PVS. However, the HOL construct
is definitional in that a recursively specified datatype is defined in terms of the primitive
type constructors available in HOL. In particular, any newly defined recursive datatype is
shown to be interpretable as a subset of some existing datatype based on finitely branching
trees. The axioms generated from the datatype declaration are shown to be sound with
respect to this interpretation. Isabelle/ZF and Isabelle/HOL both have a similar but more
general facility for defining datatypes and co-datatypes [Pau97]. The Isabelle datatype
mechanism also accomodates infinitely branching trees. The Coq system has a facility for
defining recursive and co-recursive datatypes which, like PVS and unlike HOL and Isabelle,
is a primitive construct of the Coq logic [Gim96].

The shell principle used in the Boyer-Moore theorem prover [BM79, BM88] is quite
similar to the PVS DATATYPE mechanism. It permits recursive datatypes to be specified by
means of constructors, accessors, and recognizers. Like PVS, the axioms corresponding to
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a shell datatype are built into the inference mechanisms of the theorem prover. The shell
principle, however, has many serious limitations. It is complicated by the lack of types or
subtypes in the Boyer-Moore logic. The shell principle only allows one constructor and a
bottom object thus ruling out a great many useful datatypes where multiple constructors
are required.
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Conclusions

We have described the DATATYPE mechanism of PVS and demonstrated its use in proof
construction. This mechanism captures a large class of commonly used type definitions
within a succinct notation. A number of facts about these automatically generated abstract
datatypes are built into the inference mechanisms of PVS so that it is possible to obtain
a significant degree of automation when proving theorems involving datatypes. The high
level of automation in the low-level inference mechanisms in PVS makes it easy to define
powerful and flexible high-level proof strategies.
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