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Abstract. PVS (Prototype Verification System) is a comprehensive
framework for writing formal logical specifications and constructing
proofs. An interactive proof checker is a key component of PVS. The
capabilities of this proof checker can be extended by defining proof strate-
gies that are similar to LCF-style tactics. Commonly used proof strate-
gies include those for discharging typechecking proof obligations, sim-
plification and rewriting using decision procedures, and various forms of
induction. We describe the basic building blocks of PVS proof strategies
and provide a pragmatic guide for writing sophisticated strategies.

1 Introduction

Writing correct proofs is an activity that combines creativity and tedium. The
creative aspect of proof development is in the construction of definitions, lemmas,
and theorems, the choice of high-level proof ideas, and in recovering gracefully
from failed proof attempts. The tedium is in checking that all the low-level
details have been worked out correctly. Automated proof checkers are meant
to verify the low-level proof steps corresponding to the high-level proof guid-
ance given interactively. Automated theorem provers, on the other hand, are
required to discover both the high-level outline and the low-level details re-
quired to prove or refute a given conjecture. Such theorem provers have yet to
achieve the level of sophistication needed to reliably tackle conjectures with in-
teresting mathematical content. Early proof checkers required proofs to be given
entirely in terms of low-level inferences (such as modus ponens or instantia-
tion) [McC62,dB80,BB74]. The second generation of proof checkers included a
language for defining compound proof steps that could be justified solely in terms
of primitive inferences. PVS builds on these prior approaches. PVS employs an
expressive specification language based on higher-order logic with a type sys-
tem that includes predicate subtypes, dependent types, and abstract datatypes.
? Funded by Naval Research Laboratory Contract N00173-00-C-2086 and National
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These features not only allow mathematical ideas to be captured with cogency,
but they also interact synergistically with the inference procedures. PVS al-
lows complex proof strategies to be built up from quite sophisticated primitive
inference steps that employ arithmetic decision procedures, rewriting, and sim-
plification. The advantage of the PVS approach is that it exploits the efficiency
of modern automated deduction technologies in the construction of powerful
and flexible proof strategies. The drawback is that the trusted code base is fairly
large since it includes the typechecker and several complex inference procedures.

PVS has a simple language for defining proof strategies. A number of PVS users
have used the PVS strategy language for defining customized proof strategies
for a variety of applications. Typically, a user builds up a significant body of do-
main knowledge in a field like finite set theory, analysis, graph theory, algebra, or
trigonometry. Proofs in specific applications use this domain knowledge in a styl-
ized format. Proof strategies are defined to package such patterns of usage so that
they can be used by non-experts. The PC/DC system [SS94] provided a front-
end to PVS that contained various proof strategies for reasoning with a real-time
interval temporal logic called the duration calculus. The TAME system [Arc00]
from the US Naval Research Laboratory provides a collection of custom proof
strategies for carrying out proofs of I/O automata at a level of detail that is rea-
sonably faithful to the original hand proofs. The LOOP project [vdBJ01] at the
University of Nijmegen is another example of a substantial investment in PVS
proof strategies for automating proofs of Java code. Work on PVS strategies at
the NASA Langley Research Center has yielded the Manip package [Vit02] for
algebraic simplification strategies and the Field package [MM01] (modeled on
the eponymous Coq library) for simplifying subgoals involving real arithmetic.

User-defined proof strategies are thus an important mechanism for customizing
the proof-checking capabilities of PVS toward specific domains. This paper is a
brief tutorial on writing advanced proof strategies in PVS. It is directed primarily
at PVS users who are interested in achieving greater levels of automation and
customization. We first provide some background on proof checking in general
(Section 2), and on PVS in particular (Section 3). Some of the PVS internal data
structures are reviewed in Section 4. Section 5 introduces the strategy language.
We explain the construction of some simple proof strategies in Section 6, and
cover more advanced techniques in Section 7. Conclusions and future directions
are sketched in Section 8. Due to space limitations, the discussion of strategies
and PVS interfaces here contains many gaps. A larger document [OS03] covering
the PVS application programmer interface is currently under development.

2 Background

Automated proof checking has an illustrious history. In the seventeenth century,
Gottfried Leibniz had already conceived of a language in which knowledge could
be systematized so that a logic engine could be used to resolve arguments. A

2



similar fancy inspired Boole in the development of Boolean algebra. The mecha-
nization of mathematics started to seem more realistic with the formalization of
various branches of mathematics at the dawn of the twentieth century through
the work of Dedekind, Peano, Cantor, Frege, Russell, Whitehead, and Hilbert. At
the beginning of his celebrated article on the incompleteness theorem [Göd92],
Gödel explicitly acknowledges the possibility of mechanically checking mathe-
matical proofs. Turing’s article Computing Machinery and Intelligence [Tur63]
also proposed the use of computers as proof engines. Bush’s famous article As
We May Think [Bus45] asserts the centrality of verified reasoning in scientific
computing.1

Automated reasoning was actively investigated in the 1950s through the work
of Davis, Newell, Shaw, and Simon, Wang, Gilmore, and Prawitz. These works
were not concerned with proof checking. The earliest work on this topic is due
to McCarthy [McC62] in the 1960s. The Automath project was initiated by
de Bruijn [dB80,NGdV94] in the mid-1960s and introduced many key ideas.
Jutting [vBJ79] used Automath to verify Landau’s Foundations of Analy-
sis [Lan60]. Bledsoe’s IMPLY system [BB74] was developed during the late 1960s
and early 1970s and applied to proofs in set theory and analysis. The LCF family
of systems [GMW79] includes such systems as Nuprl [CAB+86], HOL [GM93],
Coq [CCF+95], Isabelle [Pau94], HOL-Lite [Har00], and LEGO [LP92]. LCF is
best known for introducing the ML programming language [GMM+77,MTH90]
as a way of defining proof tactics and tacticals. The Mizar proof checker [Rud92]
constitutes one of the most sustained and coordinated efforts at mechanizing a
large body of mathematics.

3 Brief Overview of PVS

Work on the PVS proof checker began at SRI International in 1990. PVS
has been strongly influenced in its design by its immediate predecessor, the
Ehdm system [EHD93]. PVS also builds on the prior work in automated proof
checking, especially the work of Bledsoe and the LCF family of systems, the
work by Shostak [Sho84] and Nelson and Oppen [NO79] on ground decision
procedures, and the proof strategies employed by the Boyer–Moore theorem
prover [BM79,BM88]. Like HOL and Ehdm, the PVS specification language is
based on classical higher-order logic but with added features like predicate sub-
types, dependent types, and abstract datatypes. Features similar to subtypes
and dependent types also appear in other logics, but in PVS, the decision pro-
cedures provide crucial support for processing specifications that exploit these
features. With predicate subtyping, typechecking is undecidable in general, but
the PVS typechecker verifies simple type correctness and generates proof obli-
gations corresponding to the subtypes. These proof obligations can be proved
1 To quote Bush: Logic can become enormously difficult, and it would undoubtedly be

well to produce more assurance in its use. . . .We may some day click off arguments
on a machine with the same assurance that we now enter sales on a cash register.
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automatically or interactively, and the majority of them succumb easily to simple
proof strategies that rely heavily on the PVS decision procedures.

We will use the simple example of the language equivalence between determin-
istic and nondeterministic finite automata to illustrate both the PVS language
and proof strategies. A PVS specification is a collection of theories. A theory is
a list of declarations of types, constants, and formulas. The declarations of types
and constants can include definitions. Declarations without definitions are said
to be uninterpreted. A theory can also take parameters that are types, individ-
uals, or (instances of) theories. The DATATYPE declaration list introduces an
abstract datatype with two constructors: null representing the empty list, and
cons which adds an element to the front of a list. The accessors corresponding
to cons are car, which returns the leading element, and cdr which represents
the remainder of the list minus the leading element. The list datatype when
typechecked, generates several theories that contain a various axioms and oper-
ations, including induction principles and recursion operators. The list datatype
is introduced in the PVS prelude which contains formalizations of a number of
basic datatypes.

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

The theory DFA formalizes deterministic automata where the number of states
is not necessarily finite. The states of the automata are drawn from the uninter-
preted type state in which there is a distinguished start state, and a designated
set of final states final?. The type set[state] is an abbreviation for the pred-
icate type [state -> bool]. The automaton operates on an alphabet Sigma,
and the transition function delta maps a given alphabet and source state to a
target state. The operation DELTA iterates delta and is defined to take a string
of alphabets from Sigma and a source state and return a target state. DAccept?
is a predicate that accepts a string if the final state returned by DELTA is a valid
final state.
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DFA : THEORY

BEGIN

Sigma : TYPE

state : TYPE

start : state

delta : [Sigma -> [state -> state]]

final? : set[state]

DELTA((string : list[Sigma]))((S : state)):

RECURSIVE state =

(CASES string OF

null : S,

cons(a, x): delta(a)(DELTA(x)(S))

ENDCASES)

MEASURE length(string)

DAccept?((string : list[Sigma])) : bool =

final?(DELTA(string)(start))

END DFA

The theory NFA for nondeterministic automata is similar to DFA. The type of
ndelta differs from that of delta in returning a set of states rather than a
single state. The recursive operation NDELTA similarly processes a string with
respect to a state to return a set of states. The nondeterministic automaton
accepts this string if the set of states returned by NDELTA contains a final state.

NFA : THEORY

BEGIN

nSigma : TYPE

nstate : TYPE

nstart : nstate

ndelta : [nSigma -> [nstate -> set[nstate]]]

nfinal? : set[nstate]

NDELTA((string : list[nSigma]))((s : nstate)) :

RECURSIVE set[nstate] =

(CASES string OF

null : singleton(s),

cons(a, x): lub(image(ndelta(a), NDELTA(x)(s)))

ENDCASES)

MEASURE length(string)

Accept?((string : list[nSigma])) : bool =

(EXISTS (r : (nfinal?)) :

member(r, NDELTA(string)(nstart)))

END NFA
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The language equivalence between the two automaton is captured by the theory
equiv. The NFA theory is imported into the theory equiv. The symbols declared
in NFA are used to create an instance of DFA that corresponds to the subset con-
struction used to show the equivalence. Here, the alphabet Sigma is interpreted
as nSigma, the state type is interpreted as the power set of the type nstate,
and start, delta, and final? are also suitably defined. The resulting interpre-
tation of the theory DFA is used to show the equivalence between NFA and DFA
in two steps. The lemma main states the equivalence between NDELTA and the
interpreted DELTA operation. The theorem equiv states the equivalence between
the strings accepted by the NFA and those accepted by the corresponding DFA.

equiv: THEORY

BEGIN

IMPORTING NFA

NFADFA : THEORY =

DFA{{Sigma = nSigma,

state = set[nstate],

start = singleton(nstart),

delta((symbol : nSigma))((S : set[nstate])) =

lub(image(ndelta(symbol), S)),

final?((S : set[nstate])) =

(EXISTS (r : (nfinal?)) : member(r, S))}}

main: LEMMA

(FORALL (x : list[nSigma]), (s : nstate):

NDELTA(x)(s) = DELTA(x)(singleton(s)))

equiv: THEOREM

(FORALL (string : list[nSigma]):

Accept?(string) IFF DAccept?(string))

END equiv

The first proposition, main, is proved by invoking the induct-and-simplify
strategy to employ list induction on the parameter x. The second proposition,
equiv, is is proved by employing the grind strategy to apply rewrite rules, sim-
plification using the decision procedures, and heuristic quantifier instantiation.
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main :

|-------

{1} (FORALL (x: list[nSigma]), (s: nstate):

NDELTA(x)(s) = DELTA(x)(singleton(s)))

Rule? (induct-and-simplify "x")

NDELTA rewrites NDELTA(null)(s!1)

to singleton(s!1)

DELTA rewrites DELTA(null)(singleton(s!1))

to singleton(s!1)

NDELTA rewrites NDELTA(cons(cons1_var!1, cons2_var!1))(s!1)

to lub(image(ndelta(cons1_var!1), NDELTA(cons2_var!1)(s!1)))

DELTA rewrites DELTA(cons(cons1_var!1, cons2_var!1))(singleton(s!1))

to lub(image(ndelta(cons1_var!1), DELTA(cons2_var!1)(singleton(s!1))))

By induction on x, and by repeatedly rewriting and simplifying,

Q.E.D.

equiv :

|-------

{1} (FORALL (string: list[nSigma]): Accept?(string) IFF DAccept?(string))

Rule? (grind :theories "equiv")

main rewrites NDELTA(string)(nstart)

to DELTA(string)(singleton(nstart))

member rewrites member(r, DELTA(string)(singleton(nstart)))

to DELTA(string)(singleton(nstart))(r)

Accept? rewrites Accept?(string)

to EXISTS (r: (nfinal?)): DELTA(string)(singleton(nstart))(r)

member rewrites member(r, DELTA(string)(singleton(nstart)))

to DELTA(string)(singleton(nstart))(r)

DAccept? rewrites DAccept?(string)

to EXISTS (r: (nfinal?)): DELTA(string)(singleton(nstart))(r)

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

The inner workings of the grind strategy are described in Section 6, and those
of induct-and-simplify are explained in Section 7.

4 PVS Data Structures

In writing sophisticated PVS strategies, it is useful to have a basic understanding
of the way specifications are represented in PVS. Most data are maintained in the
form of CLOS (Common Lisp Object System) objects. The appropriate classes
are defined using a Lisp macro (defcl classname (superclasses ) slots ).
Typical classes are
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1. module: Contains declarations and judgements corresponding to a PVS the-
ory. The expression (get-theory "foo") returns the theory module named
foo, and (show (get-theory "foo")) displays the slots and their contents.

2. type-decl: Type declaration.
3. formula-decl: Formula declaration.
4. funtype: Function type.
5. name-expr: Name expression, i.e., constants or variables.
6. application: Application expressions.

4.1 Proof State

PVS proofs employ Gentzen’s sequent calculus as the basic representation. A
PVS sequent has of the form

{−1} antecedentformula1
...

[−m] antecedentformulam

`
{1} succedentformula1

...
[n] succedentformulan

Here, the negatively numbered formulas are the antecedents of the sequent, and
the positively numbered formulas are the succedents. Proofs operate by reducing
a goal sequent to subgoal sequents in response to a proof command. Formulas in
a subgoal sequent that appear in the parent sequent are numbered within square
brackets, and the newly introduced formulas are numbered within braces. Inter-
nally, the proof state is a CLOS object with slots including the current-goal
sequent, the parent-proofstate, and the active current-subgoal. The cur-
rent goal is a sequent whose main slot s-formulas holds a list of s-forms. The
s-forms are themselves CLOS objects with a formula field that contains the
PVS expression corresponding to a sequent formulas. The antecedent formulas
are those that are negated. The list of s-forms interleaves both antecedent and
succedent formulas. The proof state also contains fields corresponding to the
parent proofstate and the subgoal proof states. The current proof state within a
proof is accessible through the global variable *ps*. The Lisp command (show
ob) displays the values of the slots of a CLOS object ob.

5 The Strategy Language

The core language for defining strategies is quite simple, but this does not cover
the large number of syntactic and semantic operations that are required for

8



writing more sophisticated strategies. A PVS proof command is either a primi-
tive proof command such as flatten, split, auto-rewrite, or simplify, or a
compound strategy that is constructed from smaller proof commands. PVS does
allow new primitive inferences to be added, but such additions must be carried
out with circumspection since they can introduce unsoundness. Strategies, on
the other hand, are conservative, since it is possible to verify the validity of the
proof when all the strategies have been expanded into primitive proof steps.

The primitive proof commands in PVS include

1. flatten for disjunctive simplification.
2. split for conjunctive splitting.
3. skolem for eliminating universal-strength quantifiers.
4. inst for instantiating existential-strength quantifiers.
5. auto-rewrite for installing rewrite rules for use during simplification.
6. simplify for simplification using rewriting and ground decision procedures.

PVS strategies can either be in glassbox form so that only the expanded form
of the strategy is visible in the resulting subproof, or in blackbox form where it
is applied as a single atomic proof step and the internal steps are not recorded.
The Common Lisp constructs for defining strategies are:

1. (defstrat name arguments body help-string format-string ): De-
fines a glassbox strategy named name with arguments given in arguments .
The arguments are given as a list of required and optional arguments, where
the optional ones are preceded by the keyword &optional. The definition is
given in body . The help-string contains the documentation for the proof
command, and format-string is a Lisp format control string that is applied
to the arguments to generate the commentary that appears when the proof
command is applied. The help-string and format-string are optional.

2. (defrule name arguments body help-string format-string ): De-
fines a blackbox strategy that is otherwise similar to defstrat.

3. (defstep name arguments body help-string format-string ): De-
fines a blackbox strategy named name and a glassbox version named
name$ .

The language in which the strategies are defined involves just a few constructs:

1. (if lisp-expr strat-expr1 strat-expr2 ): Returns the value of
strat-expr2 if the evaluation of Common Lisp expression lisp-expr (rel-
ative to the current proof state) returns nil, and the value of strat-expr1 ,
otherwise.

2. (try strat-expr1 strat-expr2 strat-expr3 ): First applies
strat-expr1 to the current proof state. This could either
(a) Have no effect, in which case, strat-expr3 is invoked.
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(b) Complete the subproof and strat-expr2 and strat-expr3 are not
used.

(c) Generate a failure, which is propagated to the parent proof state.
(d) Generate subgoals, and strat-expr2 is applied to these subgoals, and

strat-expr3 is not evaluated.
3. (let ((var1 lisp-expr1 )...(var1 lisp-expr1 )) strat-expr ):

Binds vari to the value of lisp-expri in strat-expr .
4. (skip): Does nothing.
5. (fail): Signals failure to trigger backtracking.
6. (quote strat-expr ): Evaluates to strat-expr but is useful when the

strategy is constructed as a Lisp s-expression.

Note that (try (skip) A B) is equivalent to B, whereas (try (try (fail)
A B) C D) is equivalent to D. Definitions can also involve recursion. There are
some simple strategies that are analogous to LCF tacticals in that they are used
to direct other strategies. The else strategy applies step1, and backtracks to
step2 if the step1 does nothing.

(defstrat else (step1 step2)

(try step1 (skip) step2)

"If step1 fails, then try step2, otherwise behave like step1" )

The repeat strategy applies step to the current goal, and recursively applies the
strategy to the first resulting subgoal. It thus repeats a step along the “main”
branch of a proof. Recall that the global variable *ps* captures the current
proofstate relative to which the strategy is being evaluated. The simpler strategy
repeat* repeats a step along all the branches of a proof. Either of these strategies
could fail to terminate so it is important to ensure that they are only applied to
steps that eventually do nothing.

(defstrat repeat (step)

(try step (if (equal (get-goalnum *ps*) 1)

(repeat step)

(skip))

(skip))

"Successively apply STEP along main branch until it does nothing.")

(defstrat repeat* (step)

(try step (repeat* step) (skip))

"Successively apply STEP until it does nothing.")

The propositional simplification strategy applies disjunctive flattening to the se-
quent and recursively invokes itself on the subgoals. When disjunctive flattening
is exhausted, then conjunctive splitting is employed, and again, the strategy is
recursively invoked until there are no further top-level disjunctive or conjunctive
connectives in the sequent. The recursive invocation of prop uses the expansive

10



prop$. This makes it easier to observe the internal behavior by invoking the
expansive strategy prop$.

(defstep prop ()

(try (flatten) (prop$) (try (split)(prop$) (skip)))

"A black-box rule for propositional simplification."

"Applying propositional simplification")

6 Simple Proof Strategies

We now examine the construction of the grind strategy as an instance of a simple
proof strategy that combines a number of smaller proof steps. This strategy
takes a number of optional arguments with possible default values. The strategy
installs rewrite rules from the definitions in the current sequent (and, transitively,
the definitions used in these), the given theories and rewrites, but excluding
those listed in exclude. This is followed by propositional simplification using the
bddsimp command, and assert which carries out simplification using the ground
decision procedures and the installed rewrite rules. The command replace* is
used to apply the antecedent equalities in the sequent as rewrites. The reduce
command (described below) is invoked with a number of arguments in keyword
form. In a call to the strategy, the required arguments must be given in order
but the optional arguments can be given in keyword form, as illustrated in the
call to reduce$.

(defstep grind (&optional (defs !)

theories rewrites exclude (if-match t)

(updates? t) polarity? (instantiator inst?)

(let-reduce? t))

(then

(install-rewrites$ :defs defs :theories theories

:rewrites rewrites :exclude exclude)

(then (bddsimp)(assert :let-reduce? let-reduce?))

(replace*)

(reduce$ :if-match if-match :updates? updates?

:polarity? polarity? :instantiator instantiator

:let-reduce? let-reduce?))

"..."

"Trying repeated skolemization, instantiation, and if-lifting")

The reduce command repeatedly applies the bash command and then executes
replace* on any subgoals.
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(defstep reduce (&optional (if-match t)(updates? t) polarity?

(instantiator inst?) (let-reduce? t))

(repeat* (try (bash$ :if-match if-match :updates? updates?

:polarity? polarity? :instantiator instantiator

:let-reduce? let-reduce?)

(replace*)

(skip)))

"..."

"Repeatedly simplifying with decision procedures, rewriting,

propositional reasoning, quantifier instantiation, skolemization,

if-lifting and equality replacement")

The bash command is the core of reduce. It first executes assert, and then uses
the if construct to selectively use an instantiator to instantiate any existential-
strength quantifiers. The repeat loop contains the command skolem-typepred
that introduces constants for universal-strength quantifiers followed by disjunc-
tive flattening. Any embedded conditionals are then lifted to the top level of
the sequent with the lift-if command. The updates? flag converts update
expressions into conditional form.

(defstep bash (&optional (if-match t)(updates? t) polarity?

(instantiator inst?) (let-reduce? t))

(then (assert :let-reduce? let-reduce?)(bddsimp)

(if if-match (let ((command (generate-instantiator-command

if-match polarity? instantiator)))

command)(skip))

(repeat (then (skolem-typepred)(flatten)))

(lift-if :updates? updates?))

"..."

"Simplifying with decision procedures, rewriting, propositional

reasoning, quantifier instantiation, skolemization, if-lifting.")

7 Advanced Proof Strategies

We first examine a strategy that while simple still illustrates features that are
basic to the more advanced strategies. The strategy replace-extensionality
replaces all occurrences of a term f by a term g, where the equality f = g holds
by extensionality. The type of f and g must be either a function, record, tuple,
or a datatype in order for a suitable extensionality scheme to be available. The
optional argument expected? is there in the rare event that the type of f is
ambiguous. The optional argument keep? is given as T when the equality f = g
is to be retained at the end of the step.

Arguments to strategies that are PVS expressions can be either in the form of
concrete syntax as a string or as abstract syntax which is already parsed or even
typechecked. Strategies invoked directly by the user often contain arguments in
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the form of concrete syntax, but those invoked from another strategy may have
their arguments in a parsed and typechecked form. The operation pc-parse
parses the expression if needed and its second argument is the expected non-
terminal, usually either ’type-expr or ’expr. The operation typecheck type-
checks the parsed expression relative to a given context. The global variable
*current-context* binds the context corresponding to the current goal. The
function pc-typecheck is a variant of typecheck that first looks for an occur-
rence of the given expression in the current sequent. Since the input expression is
likely to occur in the sequent, this saves the expense of typechecking. The strat-
egy applies extensionality step to the given expected type, if there is one. Oth-
erwise, extensionality is applied to the type of the first or second argument.
If the extensionality step succeeds, then it adds the appropriate extensionality
axiom as the first antecedent formula. This formula is then instantiated with
the typechecked forms of the f and g arguments. The instantiated axiom is then
subject to conjunctive splitting. The first branch corresponds to the conclusion
equality between f and g. The replace command is applied to this equality. If
the keep? argument is nil, which is its default value, then equality formula is
deleted. The remaining subgoals correspond to the conditions on the instance of
the extensionality axiom, and these are discharged by successive applications of
skolem!, beta, and assert. The instantiation step might have generated TCCs,
and the assert step is applied to the subgoals corresponding to these TCCs.

(defstep replace-extensionality (f g &optional expected keep?)

(let ((tt (when expected (typecheck (pc-parse expected ’type-expr)

:context *current-context*))))

(let ((ff (pc-typecheck (pc-parse f ’expr)

:expected tt))

(gg (pc-typecheck (pc-parse g ’expr)

:expected tt)))

(let ((tf (type ff))

(tg (type gg)))

(try (if tt (extensionality tt)

(try (extensionality tf)(skip)

(extensionality tg)))

(branch (inst - ff gg)

((branch (split -1)

((then (replace -1)

(if keep? (skip)

(delete -1)))

(then* (skolem! 1)

(beta 1);;changed from + to 1.

(assert 1))))

(assert)))

(skip)))))

"..."

"Replacing ~a by ~a using extensionality")
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The apply-extensionality strategy is used to prove a sequent with a conse-
quent equality by employing replace-extensionality to replace the left-hand
side of the equality by its right-hand side. The optional argument fnum is +
(indicating the consequent formulas) by default. The command first selects the
s-forms corresponding to fnum using select-seq. The first equality among
these formulas is used as the candidate for applying replace-extensionality.
The replace-extensionality step can generate subgoals corresponding to
TCCs, and the candidate formula can be deleted from these when the hide?
flag is T. The skip-msg is a variant of skip that generates a comment.

(defstep apply-extensionality (&optional (fnum +) keep? hide?)

(let ((sforms (select-seq (s-forms (current-goal *ps*))

(if (memq fnum ’(* + -)) fnum

(list fnum))))

(fmla (loop for sf in sforms thereis

(when (equation? (formula sf))

(formula sf))))

(lhs (when fmla (args1 fmla)))

(rhs (when fmla (args2 fmla))))

(if fmla

(try (replace-extensionality$ lhs rhs :keep? keep?)

(then

(let ((fnums (find-all-sformnums (s-forms

(current-goal *ps*))

’+

#’(lambda (x)

(eq x fmla))))

(fnum (if fnums (car fnums) nil)))

(if (and hide? fnum) (delete fnum) (skip)))

(assert))

(skip-msg "Couldn’t find a suitable extensionality rule."))

(skip-msg "Couldn’t find suitable formula for applying ~

extensionality.")))

"..."

"Applying extensionality")

The last strategy we describe is induct-and-simplify which is used in the
DFA-NFA equivalence proof. This strategy is applied to a sequent with a con-
sequent formula that universally quantifies the given variable var. Like grind,
the install-rewrites strategy is used to install rewrite rules from the defi-
nitions in the formula, the given theories and rewrite rule names. The induct
step instantiates the induction scheme: either the one named by name or the one
that is appropriate for the variable var, and generates the base and induction
steps. These are simplified using repeated application of skolemization, assert,
propositional simplification, if-lifting, and instantiation.
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(defstep induct-and-simplify (var &optional (fnum 1) name

(defs t)

(if-match best)

theories

rewrites

exclude

(instantiator inst?)

)

(then

(install-rewrites$ :defs defs :theories theories

:rewrites rewrites :exclude exclude)

(try (induct var fnum name)

(then

(skosimp*)

(assert);;To expand the functions in the induction conclusion

(repeat (lift-if));;To lift the embedded ifs,

;;then simplify, split, then instantiate

;;the induction hypothesis.

(repeat* (then (assert)

(bddsimp)

(skosimp*)

(if if-match

(let ((command

(generate-instantiator-command

if-match nil instantiator)))

command)

(skip))

(lift-if))))

(skip)))

"..."

"By induction on ~a, and by repeatedly rewriting and simplifying")

The main step in the induct-and-simplify is the induct command. This strat-
egy first selects the candidate formula using select-seq with the input fnum.
The induction variable is parsed and a new skolem constant is generated for
it. This skolem constant is placed in a skolem-list corresponding to the out-
ermost bound variables of the formula is generated with blanks (indicated by
underscore) for those variables different from var. The body of the strategy is
described below.
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(defstep induct (var &optional (fnum 1) name)

(let ((fmla (let* ((sforms (select-seq (s-forms (current-goal *ps*))

(list fnum))))

(when sforms

(formula (car sforms)))))

(var (pc-parse var ’name))

(new-var-symbol (new-sko-symbol var *current-context*))

(skolem-list (if (forall? fmla)

(loop for x in (bindings fmla)

collect (if (format-equal var (id x))

new-var-symbol

"_"))

nil)))

[see below ])

"..."

"Inducting on ~a~@[ on formula ~a~]~@[ using induction scheme ~a~]")

If there is a selected formula, the strategy applies simple-induct to generate a
suitable instance of the induction scheme (determined by the type of var or the
given name). The induction scheme instantiated with the induction formula is
beta-reduced using beta, instantiated using inst?, and conjunctively split using
split.

(if fmla

(try (simple-induct var fmla name)

(if *new-fmla-nums*

(let ((fnum (find-sform (s-forms (current-goal *ps*))

’+

#’(lambda (sform)

(eq (formula sform)

fmla)))))

(then (beta)

(let ((fmla

(let ((sforms (select-seq

(s-forms (current-goal *ps*))

(list fnum))))

(when sforms (formula (car sforms))))))

(then (let ((x (car *new-fmla-nums*)))

(then (inst? x)

(split x)))

[see below ]))))

(skip))

(skip-msg "Could not find suitable induction scheme."))

(let ((msg (format nil "No formula corresponding to fnum ~a"

fnum)))

(skip-msg msg)))

The position in the sequent of the original formula where induction was applied,
might now be different. This position is recomputed. The formula, which must be
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universally quantified, is skolemized, and the corresponding universal quantifier
in the induction scheme is instantiated with this skolem constant. The induction
conclusion is discharged using prop leaving the base and induction subgoals. The
residue of the induction formula is deleted in these subgoals.

(let ((num (find-sform

(s-forms (current-goal *ps*))

’+

#’(lambda (sform)

(eq (formula sform)

fmla)))))

(if (eql num fnum)

(then (prop)

(skolem fnum skolem-list)

(inst - new-var-symbol)

(prop))

(if num (delete num)

(let ((newnums

(loop for n

in *new-fmla-nums*

when (and (> n 0)

(<= n fnum))

collect n))

(newfnum (+ fnum

(length newnums))))

(delete newfnum)))))

8 Conclusions

Proof checkers, like any other usable form of software, must be programmable.
User-defined proof strategies are a mechanism for defining common patterns of
inference steps as a single proof command. Such defined strategies are conser-
vative since they introduce no new unsoundness into the proof system. PVS
proof strategies are thus similar in philosophy to LCF tactics. There are, how-
ever, some significant differences with LCF in that the primitive inferences in
PVS encompass rewriting and the use of decision procedures. They are there-
fore much more complex than those typically employed by the LCF family of
checkers. The PVS primitive proof commands are neither easily nor efficiently
definable by means of tactics. By starting with powerful primitive inferences,
it is possible to perform proof construction and strategy definition at a level of
detail that is closer to that of a hand-proof.

The core of the PVS strategy language is quite simple but writing effective
strategies requires familiarity with Common Lisp and the underlying PVS data
structures. The constructs of the strategy language are inspired by the recursive
waterfall strategy employed by the theorem provers of Boyer and Moore. The
prop and ground strategies are typical of such recursive waterfalls.
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Proof checking continues to pose significant challenges. There is still a lot of te-
dium associated with proof construction. These challenges can be addressed by
identifying useful primitive proof steps for building proofs in specific domains,
new techniques for building sound and efficient decision procedures, and system-
atic studies of the strategies that are used in constructing complex proofs. Proof
strategies also need to be integrated with formalized libraries of mathematical
knowledge. The PVS strategy language can be enhanced by means of a type
system and a formal semantics (see Kirchner [Kir03]).
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[MM01] C. Muñoz and M. Mayero. Real automation in the field. Technical Report
NASA/CR-2001-211271 Interim ICASE Report No. 39, ICASE-NASA Lan-
gley, ICASE Mail Stop 132C, NASA Langley Research Center, Hampton
VA 23681-2199, USA, December 2001.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

[NGdV94] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected Papers on
Automath. North-Holland, Amsterdam, 1994.

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[OS03] S. Owre and N. Shankar. PVS API Reference. Computer Science Labora-
tory, SRI International, Menlo Park, CA, September 2003.

[Pau94] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer-Verlag, 1994.

[Rud92] Piotr Rudnicki. An overview of the MIZAR project. In Proceedings of
the 1992 Workshop on Types for Proofs and Programs, pages 311–330,
B̊astad, Sweden, June 1992. The complete proccedings are available at
http://www.cs.chalmers.se/pub/cs-reports/baastad.92/; this partic-
ular paper is also available separately at http://web.cs.ualberta.ca/

~piotr/Mizar/MizarOverview.ps.
[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,

31(1):1–12, January 1984.
[SS94] Jens U. Skakkebæk and N. Shankar. Towards a Duration Calculus proof as-

sistant in PVS. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863
of Lecture Notes in Computer Science, pages 660–679, Lübeck, Germany,
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