The PVS Prelude Library

S. Owre and N. Shankar

Abstract

The PVS Prelude Library is a collection of basic theories about logic, functions, predicates, sets, numbers, and other datatypes. The theories in the prelude library are visible in all PVS contexts, unlike those from other libraries that have to explicitly imported. These theories also illustrate various language features of PVS that are useful formalization aids.

Contents

Contents i
1 Introduction 1
2 Logic: Booleans, Equality, Quantifiers, and Conditionals 2
2.1 booleans 2
2.2 equalities 2
2.3 notequal 3
2.4 if_def 3
2.5 boolean_props 3
2.6 xor_def 3
2.7 quantifier_props 3
2.8 defined_types 3
2.9 exists1 3
2.10 equality_props 4
2.11 if_props 4
3 Functions 5
3.1 functions 5
3.2 functions_alt 6
3.3 restrict 6
3.4 restrict_props 6
3.5 extend 6
3.6 extend_bool 6
3.7 extend_props 7
3.8 extend_func_props 7
3.9 K_conversion 7
3.10 K_props 7
3.11 identity 7
3.12 identity_props 7
3.13 function_inverse_def 7
3.14 function_inverse 8
3.15 function_inverse_alt 8
3.16 function_image 8
3.17 function_props 8
3.18 function_props_alt 8
3.19 function_props2 9
3.20 operator_defs 9
3.21 function_image_aux 9
3.22 function_iterate 9
3.23 PartialFunctionDefinitions 9
3.24 PartialFunctionComposition 9
4 Relations 10
4.1 relations 10
4.2 orders 10
4.3 orders_alt 10
4.4 restrict_order_props 10
4.5 extend_order_props 11
4.6 relation_defs 11
4.7 relation_props 11
4.8 relation_props2 11
4.9 relation_converse_props 11
5 Induction 12
5.1 wf_induction 12
5.2 measure_induction 12
6 Sets 13
6.1 epsilons 13
6.2 sets 13
6.3 sets_lemmas 14
6.4 indexed_sets 14
6.5 finite_sets 14
6.6 restrict_set_props 14
6.7 extend_set_props 14
6.8 ordstruct and ordinals 14
6.9 infinite_sets_def 15
6.10 finite_sets_of_sets 15
7 Numbers 16
7.1 numbers 16
7.2 number_fields 16
7.3 reals 17
7.4 real_axioms 17
7.5 bounded_real_defs 17
7.6 bounded_real_defs_alt 18
7.7 real_types 18
7.8 rationals 18
7.9 integers 18
7.10 naturalnumbers 18
7.11 min_nat 18
7.12 real_defs 19
7.13 real_props 19
7.14 rational_props 19
7.15 integer_props 19
7.16 floor_ceil 19
7.17 exponentiation 19
7.18 euclidean_division 19
7.19 divides 20
7.20 modulo_arithmetic 20
7.21 subrange_inductions 20
7.22 bounded_int_inductions 20
7.23 bounded_nat_inductions 20
7.24 subrange_type 20
7.25 int_types 20
7.26 nat_types 20
7.27 nat_fun_props 21
7.28 lex2 21
7.29 exp2 21
8 Sequences, lists, strings, and bitvectors 22
8.1 sequences 22
8.2 seq_functions 22
8.3 finite_sequences 22
8.4 list 23
8.5 list_props 23
8.6 map_props 23
8.7 filters 23
8.8 list2finseq 23
8.9 list2set 23
8.10 disjointness 23
8.11 character 23
8.12 strings 24
8.13 bit 24
8.14 bv 24
8.15 bv_cnv 24
8.16 bv_concat_def 24
8.17 bv_bitwise 24
8.18 bv_nat 24
8.19 empty_bv 25
8.20 bv_caret 25
9 Sum types 26
9.1 lift 26
9.2 union 26
10 Quotient types 27
10.1 EquivalenceClosure 27
10.2 QuotientDefinition 27
10.3 KernelDefinition 27
10.4 QuotientKernelProperties 28
10.5 QuotientSubDefinition 28
10.6 QuotientExtensionProperties 28
10.7 QuotientDistributive 28
10.8 QuotientIteration 28
11 Mu -calculus and CTL 29
11.1 mucalculus 29
11.2 ctlops 29
11.3 fairctlops 29
11.4 Fairctlops 30
Bibliography 31

Chapter 1

Introduction

The PVS prelude is a large body of theories that provides the infrastructure for the PVS typechecker and prover, as well as much of the mathematics needed to support specification and verification of systems. It is worthwhile looking at the prelude, as it also provides a rich source of examples, both for specification and proofs.

This report is intended to serve as a roadmap to the prelude and is meant to be read in conjunction with the prelude itself. ${ }^{1}$ Broadly speaking, the prelude can be divided into the logic, functions, relations, induction, sets, numbers, sequences, sum types, quotient types, and mu-calculus. These are described below. Note that the prelude is built sequentially, and declarations must be given prior to their use. This means that the conceptual division is not strictly followed in the prelude.

[^0]
Chapter 2

Logic: Booleans, Equality, Quantifiers, and Conditionals

The first declarations are those of the the type boolean and the boolean operators. Theoretically, this could be done using datatypes, but the datatype mechanism itself relies on the boolean type, so they are defined as uninterpreted types and functions. Equality, disequality, and IF operators are declared polymorphically, using types as theory parameters.

2.1 booleans

The theory booleans introduces the nonempty type boolean (or, bool, for short) with elements TRUE and FALSE, and the propositional operators for conjunction, AND or \&, disjunction, OR, implication, IMPLIES or =>, converse implication, WHEN, and equivalence, IFF or $<=>$.

Some axioms about these operators are given as postulates in the theory boolean_props below to indicate that these properties are actually built-in as primitive inference rules of the PVS proof checker. The declarations given here provide the context for typechecking PVS formulas.

2.2 equalities

A function is a symbol of type [D \rightarrow R], here D is the domain type and R is the range type. A predicate is a function whose range type is boolean. The theory equalities takes a single type parameter T and declares the equality symbol = as a binary predicate over this type. Some properties of equality are given as postulates in the theory eq_props below.

2.3 notequal

The theory notequal also takes a type parameter T and introduces the binary disequality predicate $/=$.

2.4 if_def

The theory if def takes a type parameter T and declares a conditional operator IF which takes a three arguments: a boolean test argument, and a then and else part that are both of type T. The conditional operator has a mix-fix syntax as IF test THEN expr1 ELSE expr2 ENDIF. The axioms for the IF operator are unspecified and built-in as primitive inference rules in the PVS proofchecker.

2.5 boolean_props

The operators introduced in the theory boolean are defined here in terms of equality and IF. The properties have already been incorporated into the primitive inference rules of PVS proofchecker like FLATTEN and SPLIT.

2.6 xor_def

The exclusive-or connective or boolean disequality, XOR, is defined in the theory xor_def.

2.7 quantifier_props

The theory quantifier_props introduces the existential and universal quantifiers with respect to a type parameter t. These are binding operations so that the occurrences of x and y in $\mathrm{x} /=\mathrm{y}$ are bound in EXISTS $\mathrm{x}, \mathrm{y}: \mathrm{x} /=\mathrm{y}$.

2.8 defined_types

The theory defined_types introduces pred[t] and setof [t] as abbreviations for the predicate type [$\mathrm{t}->$ bool].

2.9 exists1

The unique existence quantifier is defined in the theory in the theory exists1. It illustrates how a second-order operator like exists1 can be turned into a binding operator as exists1!.

2.10 equality_props

Postulates about equality and IF are given in equality_props. The congruence postulate is given in the theory functions below.

2.11 if_props

A couple of simple properties of conditionals are given in if_props. These are given in a separate theory and not in if_def since two type parameters are required.

Chapter 3

Functions

As PVS is based on higher-order logic, functions are the basis for much of the expressive power of the language. There are several theories that develop definitions and lemmas, including injective, surjective, and bijective functions, the restriction and extension conversions, and the K_conversion, which is important for triggering lambda conversions, described in the PVS language manual [4]. The function inverse is defined in two different ways. Theory function_inverse_def defines relations that hold between a function and its inverse, without actually defining an inverse. Theory function_inverse defines the inverse in terms of the epsilon function, which requires the domain type to be nonempty. Theory function_inverse_alt weakens this restriction by including an assumption that either the domain is nonempty or the range is empty. Function image is defined, and a number of theories developing properties of functions are provided.

3.1 functions

The functions theory provides the basic properties of functions. Because of the type equivalence of $[[\mathrm{t} 1, \ldots, \mathrm{tn}] \rightarrow \mathrm{t}]$ and $[\mathrm{t} 1, \ldots, \mathrm{tn} \rightarrow \mathrm{t}$], this theory handles any function arity. However, it doesn't handle dependent function types, since the domain and range cannot be given as independent parameters.

Extensionality and congruence postulates are given, as well as the related eta lemma. The injective?, surjective?, and bijective? predicates are defined, as well as judgements relating them. The domain and range types are defined. The graph function converts a function to a relation. The preserves (inverts) predicate holds for a given function f and relations $R_{\mathrm{D}}, R_{\mathrm{R}}$ over the domain and range, respectively, if $x R_{\mathrm{D}} y$ then $f(x) R_{\mathrm{R}} f(y)\left(f(y) R_{\mathrm{R}} f(x)\right)$.

3.2 functions_alt

This simply redefines the preserves and inverts functions in a theory where the R_{D} and R_{R} relations are theory parameters. This is useful for working with a fixed pair of relations; the instance may be specified in an importing, rather than in each use of these functions.

3.3 restrict

restrict is the restriction operator on functions, allowing a function defined on a supertype T to be turned into a function over a subtype S. It is made a conversion that is automatically inserted by the typechecker to correct type mismatches. The fact that the restriction of an injective function is injective is noted as a lemma and a judgement. The typecker annotates a term by the more refined type information provided by such judgements. Thus, whenever the restrict operation is applied to a function that is known to be injective, the resulting function is also known to be injective.

3.4 restrict_props

This simple theory just notes that restrict is the identity when the subtype is not a proper subtype.

3.5 extend

The function extend is the inverse of restrict. The difference is that there is only one possible restriction, whereas in general there are a large number of possible extensions to a given function. The form of extension provided by this theory just uses a provided default element of the range type that all elements of the domain extension are mapped to. The restrict_extend lemma says that the restriction of an extension is the identity.

3.6 extend_bool

Though extend is generally not useful as a conversion, when the range type is boolean it makes sense to make the default value false. This allows, for example, predicates on natural numbers to be treated as predicates on integers (equivalently, sets of natural numbers as sets of integers). This theory simply introduces this conversion.

3.7 extend_props

extend_props provides the lemma that extending a function from a given domain type to the same type is the identity. This usually comes about because of theory instantiation, and the typechecker has this rule built in, so that it is not needed in general.

3.8 extend_func_props

This theory simply provides the judgement that the extension of a surjective function is surjective.

3.9 K_conversion

The K combinator, called K_conversion, is defined here as $\lambda x . \lambda y . x$. When enabled as a conversion, it triggers lambda-conversions, as described in the PVS language reference [4]. This is useful as a way of formalizing states and computations over states within higher-order logic. The conversion is not enabled by default, because the typechecker frequently finds ways to mask type errors by applying this, leading to unintended specifications that are not noticed until proofs are attempted.

3.10 K_props

This theory provides judgements that K_conversion preserves subtypes.

3.11 identity

This defines the parametric identity function as I, id or identity. Any of the identifiers I, id, or identity may be used. All three are declared to be bijective.

3.12 identity_props

This theory provides judgements that the identity function preserves subtypes.

3.13 function_inverse_def

This provides the function inverse relations, but does not actually define the inverse function, see function_inverse and function_inverse_alt for two possible definitions. This theory defines the left-, right-, and two way inverse
relations, provides a number of lemmas relating these to other functional relations, for example, surjectivity and injectivity, and provides existence lemmas that are enough to discharge the assumptions that need to be discharged if the function_inverse_alt theory is used.

3.14 function_inverse

This theory defines the inverse function in terms of the epsilon function (see epsilons below), and hence requires that the domain type parameter be nonempty. The rest of the theory relates inverse to other functional properties such as injectivity and surjectivity, and provides corresponding judgements.

3.15 function_inverse_alt

This theory provides an alternative definition for inverse, called inverse_alt, but with fewer restrictions: the domain is nonempty or the range is empty. When the domain is known to be nonempty, function_inverse is generally easier to work with. Judgements are provided for inverse_alt. The existence lemmas of function_inverse_def may be usedful in discharging the assumptions that result from using this theory.

3.16 function_image

This theory provides the image and inverse_image functions, in both curried and uncurried forms. inverse_image is not the same as inverse; it is defined for all functions, not just injections, and returns a set. Several lemmas are provided relating these to various set operations.

3.17 function_props

This theory defines the functional composition operator o, provides the judgements that composition of pairs of injective, surjective, and bijective functions are respectively injective, surjective, and bijective, and states lemmas that relate composition to the image, preserves, and inverts functions.

3.18 function_props_alt

function_props_alt gives judgements relating composition to the preserves and inverts operators. The difference is that this theory has the relations as parameters rather than as variables. Thus this theory is easier to use if the relations are fixed.

3.19 function_props2

This theory simply states that composition is associative. It needs a separate theory in order to provide enough type parameters.

3.20 operator_defs

The operator_defs theory provides the predicates associated with operators, e.g., the plus and times operators associated with a ring. It provides the predicates commutative?, associative?, left_identity?, right_identity?, identity?, has_identity?, zero?, has_zero?, inverses?, has_inverses?, and distributive?.

3.21 function_image_aux

This theory defines judgements and lemmas that show that the image of a function on a finite set is finite, that the cardinality of the image of a set is less than or equal to that of the set, and equal when the function is injective, and that the image of an injective function is equipotent (i.e., there is a bijection) to the domain.

3.22 function_iterate

Provides a way to iterate a function application n times, i.e.,

$$
f^{n}(x)=\overbrace{f(\cdots(f}^{n}(x))) .
$$

Lemmas such as $f^{m} \circ f^{n}=f^{m+n}$ are also provided.

3.23 PartialFunctionDefinitions

Two representations of partial functions are described, and shown to be isomorphic. SubsetPartialFunction is defined as a dependent record type, and LiftPartialFunction is defined on the lifted range type. In practice, the formulation based on lift is more convenient, because definitions are easier and fewer TCCs are generated.

3.24 PartialFunctionComposition

This theory defines composition operators for the partial functions defined above.

Chapter 4

Relations

Relations play an important role in specifications of systems, and the prelude provides many useful definitions and properties, including reflexivity, equivalence, preorders, partial orders, well orderings, and least upper bounds and greatest lower bounds.

4.1 relations

The relations theory defines relational predicates, including reflexive?, irreflexive?, symmetric?, antisymmetric?, connected?, transitive?, and equivalence?

4.2 orders

The orders theory defines the usual ordering predicates: preorder?, partial_order?, strict_order?, dichotomous?, total_order?, linear_order?, trichotomous?, strict_total_order?, well_founded?, well_ordered?, upper_bound?, lower_bound?, least_upper_bound?, and greatest_lower_bound?. Numerous judgements relating these predicates are also provided.

4.3 orders_alt

The orders_alt theory defines upper_bound?, least_upper_bound?, lower_bound?, and greatest_lower_bound?, but with theory parameters providing the order and subset. This is useful when the order and subset are fixed.

4.4 restrict_order_props

This theory provides a set of judgements that the restriction of certain relations to a subtype still satisfy the relations. For example, the restriction of a reflexive
relation is reflexive.

4.5 extend_order_props

This theory provides a set of judgements stating that the extension of certain relations to a supertype still satisfy the relations. For example, the extension of an irreflexive relation is irreflexive. The extension in this case is such that the relation is false on elements of the extension.

4.6 relation_defs

This theory defines more general relations between two possibly distinct types. It defines the operators domain, range, image, preimage, postcondition, precondition, converse, isomorphism?, total?, and onto?.

4.7 relation_props

This defines the relational composition operator o and judgements and lemmas relating to it.

4.8 relation_props2

Proves associativity of the relational composition operator. This is needed in a separate theory in order to provide the right number of types.

4.9 relation_converse_props

This theory provides a set of judgements that state that the converse of certain relations satisfies the relation. For example, the converse of a reflexive relation is reflexive.

Chapter 5

Induction

Induction is important in proving properties of systems. The prover induct rule can make use of these induction lemmas. There are other induction lemmas in the prelude, that are all variants of natural number induction; see Section 7.

5.1 wf_induction

This defines the well-founded induction schema wf_induction.

5.2 measure_induction

measure_induction builds on well-founded induction. It allows induction over a type for which a measure function is defined.

Chapter 6

Sets

Sets in PVS (as in most higher-order logics) are represented as predicates, i.e., functions from a given type to boolean. Membership is thus simply application of a set to an element; the element belongs to the set if the application returns true. This means that a set may be given in either of the equivalent forms $\{x$: $T \mid p(x)\}$ or LAMBDA ($x: T): p(x)$.

All the usual set theoretic operators are available, e.g., union, intersection, difference, and powerset. There are also Union and Intersection, for use on sets of sets, and IUnion and IIntersection for indexed sets.

A notion of ordinal is defined, based on Cantor normal form. This only produces ordinals up to ϵ_{0}, transfinite induction is not possible with this. To do transfinite induction, set theory should be developed axiomatically within a single (non-parametric) theory. Since the primary use of PVS is for specification of systems, this has not been done. However, finite sets are very important, and the basic definitions and lemmas are in the prelude. There is also a finite_sets library that builds on this. Infinite sets are also defined, though there is no cardinality function for these.

6.1 epsilons

epsilons provides the Hilbert epsilon function. This acts as a "choice" function. The domain type must be nonempty, but the predicate need not be. Given a predicate over the parameter type, epsilon produces an element satisfying that predicate if one exists, and otherwise produces an arbitrary element of that type. Note that because the type parameter is given as nonempty, a nonempty TCC may be generated when this is used.

6.2 sets

Sets are modeled as predicates. The sets theory defines the usual set operators member, empty?, emptyset, nonempty?, full?, fullset, subset?, strict_sub-
set?, union, intersection, disjoint?, complement, difference, symmetric_difference, every, some, singleton?, singleton, add, remove, choose, the, rest, powerset, Union, and Intersection.

6.3 sets_lemmas

Several lemmas are provided about the operators defined in sets. These generally follow the lemmas and exercises provided in any introductory text on Set Theory (for example, Halmos [1]).

6.4 indexed_sets

This defines the IUnion $\left(\bigcup_{i \in I} A_{i}\right)$ and IIntersection $\left(\bigcap_{i \in I} A_{i}\right)$ operations, and lemmas about them.

6.5 finite_sets

The finite_sets theory develops finite sets as a subtype of sets for which there is an injection to a prefix of the natural numbers. Cardinality is defined, and several lemmas and judgements are provided (for example, the union of finite sets is finite).

6.6 restrict_set_props

This theory provides a set of judgements and lemmas that the restriction of a finite set to a subtype is still finite, and its cardinality is smaller.

6.7 extend_set_props

This theory provides a set of judgements and lemmas relating to the extension of a set. For example, that the extension of a finite set is finite, and the cardinality is the same.

6.8 ordstruct and ordinals

The ordstruct datatype provides the constructible ordinals. These are the ordinal numbers below $\varepsilon_{0}\left(=\omega^{\omega^{\omega}}\right)$. They are either zero or of the form $n \omega^{\alpha}+\beta$, where α and β are of type ordstruct, and n is a positive integer. As with ordinary polynomials, it is more convenient to work with ordstructs if they are given in canonical form, where terms of higher degree precede those of lower degree. This is the purpose of the ordinals theory, which defines the order < and defines the ordinal type to consist of those ordstructs that
respect the order. This essentially works with canonical representatives of an equivalence class. Note that although this is a large ordinal number, it is still countable (has cardinality \aleph_{0}). More discussion about ε_{0} may be found in $[2$, pp. 476-479].

6.9 infinite_sets_def

This defines the notion of an infinite set and provides theorems and judgements similar to those for finite sets. No notion of cardinality is given, however.

6.10 finite_sets_of_sets

This theory gives several judgements such as that the powerset of a finite set is finite, and the union of a finite number of finite sets is finite.

Chapter 7

Numbers

The usual practice in mathematics is to start from the natural numbers (e.g., the Peano axioms), and build integers as equivalence classes of pairs of nats, rationals as equivalence classes of pairs of integers, and reals as equivalence classes of Cauchy sequences or Dedekind cuts. This is very nice for foundations, but cumbersome to use in practice. In PVS we take the axiomatic approach and reverse this; the universal number type is given, and the rest are subtypes of it. The number type is completely uninterpreted, though it contains all the numerals. The number_field type introduces the field operators and axioms. The reason for introducing it is that, for example, the complex numbers may be introduced as a subtype of number_field with an axiom that it contains all reals plus new constant i, and the operators may simply be used, without having to extend them. This would not work with the reals, as they include an ordering that is incompatible with the complex numbers. Of course, other number systems could be inserted as well, for example the nonstandard reals.

The axioms used for the number_fields and reals were taken from Royden [6]. Note that many of the real axioms and lemmas are already "known" to the decision procedures, but nonlinear properties frequently require the use of the axioms or lemmas. The real_props theory is useful in this regard, and using it as an auto-rewrite-theory can make proofs a lot simpler.

7.1 numbers

This provides the top number type, of which all other number types are subtypes. All of the numerals are implicitly of this type.

7.2 number_fields

number_fields defines the type number_field, the field operations +, - (unary and binary), $*$, and $/$, and the field axioms. Note that any field containing the reals (e.g., nonstandard reals, complex numbers) could be made a subtype
of this. In the following example, there is no need to create new declarations for the field operators, and no representations are needed; the real numbers are already complex numbers. Note that the decision procedures are still sound, because they only interpret these operators when the operands are known to be real.

```
complex: THEORY
    BEGIN
    complex: NONEMPTY_TYPE FROM number_field
    real_are_complex: AXIOM FORALL (x: real): complex_pred(x)
    JUDGEMENT real SUBTYPE_OF complex
    nonzero_complex: NONEMPTY_TYPE
        = {c: complex | c /= 0} CONTAINING 1
    nzcomplex: NONEMPTY_TYPE = nonzero_complex
    i: complex
    i_ax: AXIOM i * i = -1
    rep_exists: AXIOM
        FORALL (c: complex): EXISTS (x, y: real): c = x + y*i
    rep_unique: AXIOM
        FORALL (x1, x2, y1, y2: real):
            x1 + y1*i = x2 + y2*i <<> (x1 = x2 & y1 = y2)
END complex
```


7.3 reals

The reals theory defines the real type as a subtype of number_field, defines closure judgements for the field operators, and adds the order operators <, <=, $>$, and $>=$. The numerals implicitly belong to this type.

7.4 real_axioms

This theory simply gives the order axioms for the reals: the sum and product of positive reals is positive, the negation of a positive real is not positive, and every real is greater than, equal to, or less than 0.

7.5 bounded_real_defs

The bounded_real_defs theory provides definitions for upper_bound?, lower_bound?, least_upper_bound?, and greatest_lower_bound?, then gives the completeness axiom real_complete for the reals: every nonempty set with an upper bound has a least upper bound. The corresponding lemma real_lower_complete for lower bounds is also provided.
bounded_above?, bounded_below?, bounded?, lub, and glb are also defined along with some related lemmas.

7.6 bounded_real_defs_alt

This theory provides alternative definitions for upper_bound?, lower_bound?, least_upper_bound?, and greatest_lower_bound? where the nonempty set is provided as a theory parameter. This is useful when the set is fixed.

7.7 real_types

The real_types theory defines useful subtypes of reals: nonneg_real, nonpos_real, posreal, and negreal, and provides several judgements relating these and the field operators.

7.8 rationals

This theory defines the rationals as an uninterpreted subtype of real, and provides closure judgements for the field operators. The numerals implicitly belong to the rationals.

7.9 integers

integers defines the integer type, along with the upfrom, above, nonneg_int, nonpos_int, posint, and negint, subrange, even_int, and odd_int types. It provides lots of judgements. The numerals implicitly belong to the integers.

7.10 naturalnumbers

naturalnumbers defines the natural number type (also known as the whole numbers) and the upto and below types. succ, pred, and natural number minus (, sometimes called monus) are defined, and finally weak and strong natural number induction lemmas are given. The numerals implicitly belong to the natural numbers.

7.11 min_nat

This theory defines the minimum min of a set of natural numbers.

7.12 real_defs

real_defs defines the sign function sgn, absolute value abs, maximum and minimum functions max and min, and several judgements involving these.

7.13 real_props

This theory provides dozens of lemmas about real numbers. Many of them are especially useful in dealing with nonlinear arithmetic, which are (necessarily) incomplete in the decision procedures. This theory can be used in the auto-rewrite-theory prover command, which often makes proofs involving real number arithmetic simpler.

7.14 rational_props

rational_props gives the axiom that any rational number is the quotient of two integers, and lemmas stating the density of the rationals.

7.15 integer_props

This provides several lemmas about integers and natural numbers, including specialized least upper bound (lub) and greatest lower bound (glb) properties.

7.16 floor_ceil

floor_ceil defines the floor and ceiling functions, and gives several lemmas and judgements pertaining to them.

7.17 exponentiation

exponentiation provides the definitions expt and ^. expt multiplies a real by itself the number of times specified, where 0 times returns a 1 (thus expt $(0,0)$ $=1)$. \quad is defined in terms of expt to work for integers, but in this case if the integer is negative then the real argument must be nonzero; this leads to a dependent type. Several properties and judgements are also provided.

7.18 euclidean_division

This defines the mod function, and the Euclidean algorithm properties are given declaratively.

7.19 divides

This defines the divides relation between integers and provides lemmas and judgements accordingly.

7.20 modulo_arithmetic

This defines the rem and ndiv functions, and proves several lemmas about these operations.

7.21 subrange_inductions

This provides induction lemmas for the subrange type, suitable for use in the prover induction commands.

7.22 bounded_int_inductions

This theory provides induction lemmas for the upfrom and above types, suitable for use in the prover induction commands.

7.23 bounded_nat_inductions

This theory provides induction lemmas for the upto and below types, suitable for use in the prover induction commands.

7.24 subrange_type

This theory defines the subrange type in a parameterized theory, mostly for backward compatibility.

7.25 int_types

This just defines the upfrom and above types in a parameterized theory, mostly for backward compatibility.

7.26 nat_types

This theory defines the upto and below types in a parameterized theory, mostly for backward compatibility.

7.27 nat_fun_props

Special properties of injective, surjective, and bijective functions over the natural numbers.

7.28 lex2

lex2 provides a lexical ordering for pairs of natural numbers. This illustrates the use of ordinals.

$7.29 \quad \exp 2$

This theory defines the $\exp 2$ function, which is simpler to use than expt for defining the bitvector theories.

Chapter 8

Sequences, lists, strings, and bitvectors

Sequences, finite sequences, lists, strings and bitvectors are treated in this chapter. Strings are built from characters, which are in this chapter.

Bit vectors are defined parameterized by the word size. The basic operations and their properties are given in the prelude. More extensive development is provided with the bitvector library.

8.1 sequences

sequences provides the polymorphic sequence type sequence, as a function from natural numbers to the base type. The usual sequence functions nth, suffix, first, rest, delete, insert, and add are also provided. Note that these are infinite sequences, and do not contain finite sequences as a subtype.

8.2 seq_functions

seq_functions defines the map function that generates a new sequence by applying a given function pointwise over the input sequence.

8.3 finite_sequences

Finite sequences are defined as a dependent record type finite_sequence, with the length as the first field and a seq as a function from the natural numbers below length to the base type. The emptyseq is defined, and a conversion is provided that allows a finite sequence to be applied to an index directly, without having to extract the seq. Composition o and concatenation ^ are defined. The extract1 conversion is provided, that lets a sequence of length 1 to be treated as the single element. Finally the associativity of composition lemma is provided.

8.4 list

This defines the list datatype, with constructors null and cons, recognizers null? and cons?, and cons accessors car and cdr. See the PVS langauge manual [4] or the PVS datatype report [5] for details.

8.5 list_props

list_props provides the length, member, nth, append, and reverse functions. Several related lemmas are given.

8.6 map_props

map_props gives the commutativity properties of composition and map, for both sequences and lists.

8.7 filters

filters defines filter functions for sets and lists, which take a set (list) and a predicate and return the set (list) of those elements that satisfy the predicate. Both the curried and uncurried forms are given.

8.8 list2finseq

This theory defines conversion function lsit2finseq from lists to finite sequences, and the inverse conversion, finseq2list.

8.9 list2set

This theory provides a conversion function list2set from lists to sets. Note that the other direction is not defined, though it could be, through the use of a choice function.

8.10 disjointness

The disjointness theory defines the pairwise_disjoint? function. This allows pairwise disjointness to be stated more succinctly.

8.11 character

The character datatype follows the ASCII control codes, of which only the first 128 are defined. This is used as the base type for strings. Note that because of
the extend1 conversion, there is no need for special syntax for characters, for example, "f" = char(102) is type correct, and easily proved.

8.12 strings

The strings theory introduces the char type and defines the type string as a finite sequence of chars. The string_rep lemma shows how strings are represented internally. The other lemmas are useful for rewriting. This theory is useful to auto-rewrite with, but make sure that list2finseq is not also an auto-rewrite rule.

8.13 bit

A bit is a boolean, a nbit is either 0 or 1 . The b2n conversion allows boolean values to be treated as nbits.

8.14 bv

The bv theory defines the bitvector type bvec, the useful bitvector constants bvec0 and bvec1, and the fill function and bit extraction operator ".

8.15 bv_cnv

This simply defines the fill[1] function to be a conversion.

8.16 bv_concat_def

This theory defines the concatenation operator o for bitvectors.

8.17 bv_bitwise

Defines bit-wise logical operations OR, AND, IFF, NOT, and XOR on bit vectors, and provides some lemmas relating them to bit extraction.

8.18 bv_nat

Provides functions bv2nat and nat2bv that map bitvectors to natural numbers and vice versa. Several related lemmas are provided.

8.19 empty_bv

Defines the empty bitvector empty_bv.

8.20 bv_caret

The extractor operation ^ decomposes a bvec into smaller bit vectors. A few lemmas are also provided.

Chapter 9

Sum types

9.1 lift

The lift datatype adds a bottom element to a given base type. This is useful for defining partial functions as seen in the PartialFunctionDefinitions theory.

9.2 union

The union datatype provides a way of doing binary coproducts (also known as sums or cotuples). This is here mostly for backward compatibility, as the cotuple type constructor, introduced in PVS 3.0, removes the need for this type.

Chapter 10

Quotient types

Quotient types are important in mathematics, where it is common to introduce an equivalence relation and define a new structure as a set of equivalence classes, with operations "lifted" to the new structure. This is provided in the following theories. Note that one imoprtant use of this is in theory interpretations, where one often wants to interpret a type as an equivalence class. See the PVS Language Manual [4] or the PVS Theory Interpretations report [3].

10.1 EquivalenceClosure

This theory provides the higher order definition of equivalence relation closure EquivalenceClosure and several lemmas.

10.2 QuotientDefinition

QuotientDefinition defines the equivalence class function EquivClass, the equivalence class representative function repEC, the Quotient type, and the quotient type representative function rep. quotient_map is similar to EquivClass, but with a different range type, making it surjective. The ECQuotient type and ECquotient_map function are defined over arbitrary relations using EquivalenceClosure.

10.3 KernelDefinition

The EquivalenceKernel relation is defined on a function, and preserves lemmas are provided.

10.4 QuotientKernelProperties

This theory provides lemmas and judgements relating EquivalenceKernel, Quotient, and quotient map.

10.5 QuotientSubDefinition

This provides QuotientSub and quotient_sub_map. These are restrictions of Quotient and quotient_map to a subtype.

10.6 QuotientExtensionProperties

This defines the lift function that lifts a function to a quotient. It does it using QuotientSub, in order to handle restricted functions properly.

10.7 QuotientDistributive

This theory makes clear that quotients commute with products: there is an isomorphism

$$
[X / S, Y] \simeq[X, Y] / \text { EqualityExtension }(S)
$$

given by the canonical map (from right to left). Such distributivity results can be used to define functions with several parameters on a quotient. In the presence of function types, this can also be done via Currying. The result is included here mainly as a test for the formalisation of quotients.

10.8 QuotientIteration

In this theory it will be shown how successive quotients can be reduced to a single quotient:

$$
(X / S) / R \simeq X / \operatorname{action}(S)(R)
$$

again via the canonical map.

Chapter 11

Mu-calculus and CTL

These theories define predicate transformers, monotonicity, and the mu and nu operators as the least and greatest fixed points. The Computation Tree Logic (CTL) is then defined in terms of the mu-calculus. Note that the model checker built into PVS is based on the mu-calculus. Various forms of fairness are also provided.

11.1 mucalculus

This defines the predicate_transformer type, monotonic?, fixpoint?, lfp?, and gfp? predicates, and the glb, lub, lfp, gfp, mu, and nu functions. The induction lemmas lfp_induction and gfp_induction are also provided.

11.2 ctlops

This defines the basic CTL temporal operators EX, EG, EU, EF, AX, AF, AG, and AU in terms of the mu-calculus. No fairness is built in.

11.3 fairctlops

Fair versions of CTL operators where fairAG(N, f) (Ff) (s) means f always holds along every N-path from s along which the fairness predicate Ff holds infinitely often. This is different from the usual linear-time notion of fairness where the strong form asserts that if an action A is enabled infinitely often, it is taken infinitely often, and the weak form asserts that if any action that is continuously enabled is taken infinitely often.

11.4 Fairctlops

Fair versions of CTL operators with lists of fairness conditions. The expression FairAG(N,f) (Fflist) (s) means f always holds on every N-path from s along which each predicate in Fflist holds infinitely often.

Bibliography

[1] Paul R. Halmos. Naive Set Theory. The University series in undergraduate mathematics. Van Nostrand, 1960. Republished by Springer-Verlag in 1974 in the Undergraduate texts in mathematics series. 14
[2] S. C. Kleene. Introduction to Metamathematics. North-Holland, Amsterdam, 1952. 15
[3] S. Owre and N. Shankar. Theory interpretations in pvs. Technical Report SRI-CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park, CA, April 2001. Available at http://pvs.csl.sri.com/doc/ interpretations.html. 27
[4] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language Reference. Computer Science Laboratory, SRI International, Menlo Park, CA, December 2001. Available at http://pvs.csl.sri.com/doc/ manuals.html. 5, 7, 23, 27
[5] Sam Owre and Natarajan Shankar. Abstract datatypes in PVS. Technical Report SRI-CSL-93-9R, Computer Science Laboratory, SRI International, Menlo Park, CA, December 1993. Extensively revised June 1997. Available at http://pvs.csl.sri.com/doc/manuals.html. Also available as NASA Contractor Report CR-97-206264. 23
[6] H. L. Royden. Real Analysis. The Macmillan Company, New York, second edition, 1968. 16

[^0]: ${ }^{1}$ In PVS, M-x view-prelude-file shows the prelude, or it is available at ftp://ftp. csl.sri.com/pub/pvs/libraries/prelude.pvs. Contributors to the prelude libraries include Ricky Butler, Paul Miner, Bruno Dutertre, Damir Jamsek, Michael Holloway, Bart Jacobs, and Jerry James.

