
Batch Proving and Proof Scripting in PVS

César A. Muñoz

National Institute of Aerospace
144 Research Drive, Hampton VA 23666, USA munoz@nianet.org

Abstract. The batch execution modes of PVS are powerful, but highly
technical, features of the system that are mostly accessible to expert
users. This paper presents a PVS tool, called ProofLite, that extends the
theorem prover interface with a batch proving utility and a proof script-
ing notation. ProofLite enables a semi-literate proving style where spec-
ification and proof scripts reside in the same file. The goal of ProofLite
is to provide batch proving and proof scripting capabilities to regular,
non-expert, users of PVS.

1 Introduction

The Prototype Verification System (PVS) [9] is a higher order logic theorem
prover developed and maintained by SRI International.1 PVS has been applied
to verification problems in a variety of areas, including safety critical industrial
applications.

PVS is well known for its expressive specification language and its impres-
sive theorem prover. The specification language is based on a rich type system
that supports predicate sub-typing and dependent records [12]. The theorem
prover has been optimized for large proofs, for example basic numerical types
are built-in and propositional simplification uses BDDs. Furthermore, as most
theorem provers, PVS can be conservatively extended with user-defined infer-
ence rules [10], called strategies, that tailor the deductive power of the system
to specific domains [1, 15].

Less known features of PVS are the batch execution modes. Although these
modes are quite powerful, their correct use requires a good knowledge of the
PVS programming interface. Therefore, they are mostly accessible to PVS expert
users.

Another limitation of the PVS interface is that, in contrast to most theorem
provers, it does not explicitly support a proof scripting notation where proofs are
written in a non-interactive way. In PVS, proofs are interactively constructed
via proof commands through a read-and-eval loop. The proof commands are
automatically saved by the system in text files using an internal format. Those
files are not intended to be directly edited by the user.

These two capabilities: batch proving and proof scripting, become important
when PVS is integrated into other verification tools. Assume for example that a
1 PVS is electronically available from http://pvs.csl.sri.com.

static checker of a programming language wants to generate proof obligations for
PVS along with specialized proof commands for each obligation. The formulas
can be written into a .pvs file. The proofs commands, on the other hand, have
to be written into a .prf file using the internal proof fomat. Finally, a PVS
batch execution mode has to be used to check whether the proof obligations are
discharged or not.

This paper describes a PVS tool, called ProofLite, that provides a user-
friendly interface to a PVS batch execution mode. ProofLite also supports a
proof scripting notation where formulas and proofs may reside in the same text
file. The rest of this paper is structured as follows. Section 2 gives an overview
of the PVS batch modes. Section 3 briefly presents different proof formats used
by PVS. Sections 4 and 5 describe the tool and its applications. The last section
concludes this work.

2 PVS Batch Modes

Typically, users interact with PVS through its customized Emacs interface. Even
mechanical tasks that do not involve editing, such as, for example, rerunning all
the proofs of a fully developed theory, normally require an interaction with the
PVS Emacs interface.

Curious PVS users may have noticed that the PVS command line accepts
the option “-batch”, which runs the system in batch mode [11]. This option is
generally used with the option -l that loads and executes an Emacs Lisp file.
This facility is extremely powerful as arbitrarily complex Emacs Lisp can be exe-
cuted this way. In particular, any PVS command can be invoked. Unfortunately,
many PVS commands are context-dependent and only make sense when they
are invoked interactively. Therefore, the correct use of this mechanism requires
a good knowledge of the PVS programming interface.

One of the main uses of the PVS batch mode is regression testing. For in-
stance, the following Emacs Lisp code will change the context to <dir>, rerun all
the proofs of <file.pvs>, and collect the output into <file.log>. It will then
compare the output against the last run and report whether there is nothing to
compare, there are no significant changes, or some difference were found since
the last run.

(pvs-validate
"<file.log>"
"<dir>"
(let ((current-prefix-arg t))
(prove-pvs-file <file.pvs>)))

If this code is saved in the file <file.el>, the validation run can be performed
in batch mode with the command line:

% pvs -batch -l <file.el>

When a difference is reported, the Emacs command
M-x pvs-compare-validation-window will place the cursor at the position
where the output files differs, if the two log files are in a split window.

For real PVS hackers, a more obscure execution mode is available through the
option -raw. In this mode, the PVS Common Lisp runtime engine is executed
without the Emacs interface. Common Lisp expressions, and in particular PVS
Common Lisp commands, can be executed in batch mode via the command line
option -e.

3 PVS Proof Formats

In PVS, specifications and proofs reside in different types of files. Specifications
are written in .pvs text files. Proofs are interactively constructed via proof
commands and automatically saved by the system in .prf files. Although proof
files are also text files, they are not intended for user manipulation. The format
of the .prf file is described by Sam Owre, one the main developers of the system,
in a message to the PVS mailing list on June 2003 as follows: “. . . The format is:

(<theory-id>
(<decl-id>
<default-proof-posn>
(<id>
<description>
<create-date>
<run-date>
<script>
<status>
<refers-to>
<real-time>
<run-time>
<interactive?>
<decision-procedure-used>)

...)
...)

where <default-proof-posn> is the (0-based) position of the default proof in
the list of proofs associated with the declaration. The <create-date> is the
time that the proof was first saved, and the <run-date> is the time it was last
rerun. The <real-time> and <run-time> are the time it took the last time it
was run, and <interactive?> indicates whether that was an interactive run or
not. These may not really reflect the last run, because the prove-theory, etc.
commands do not write out a new .prf file. Most of the rest of the fields should
be self-explanatory . . . ”

Furthermore, existing PVS proofs can be edited using the PVS Emacs in-
terface. When a proof is edited by the user, it is presented in the Emacs buffer
Proof as a sequence of commands in a proof tree. For instance, a possible proof
of lemma th2:

th2 : LEMMA a <= b IMPLIES a*abs(a) <= b*abs(b)

is displayed in the buffer Proof as follows:

(""
(skeep)
(case "a >= 0")
(("1" (grind :theories "real_props"))
("2"
(grind :theories "real_props")
(mult-ineq -1 -1 :signs (- -))
(assert))))

Note that, in this format, any control structure provided by a proof strategy
such as try, if, branch, etc., is lost.

The buffer Proof is typically used for global editing operations, such as re-
placing an identifier, for copying a proof from one formula to another, and for
steeping through a proof via the interactive theorem prover. However, given the
lack of control structure information, the proof format displayed in the buffer
Proof is not suitable for proof scripting.

4 ProofLite

ProofLite is a PVS package.2 PVS packages, which are also called prelude exten-
sions, are the mechanism offered by PVS to modularly and conservatively extend
the system with user-defined Emacs Lisp code, Common Lisp code, proof strate-
gies, and PVS theories. In particular, the ProofLite package consists of Emacs
Lisp and Common Lisp functions that implement:

– a command line utility, called proveit,
– a proof scripting notation, and
– a set of Emacs commands for management of proof scripts.

4.1 The proveit Utility

ProofLite includes the command line utility proveit that executes the theorem
prover in batch mode on a .pvs file and rerun all its proofs.

For instance, assume that all the formulas in thms.pvs have been proved.

thms : THEORY
BEGIN
a,b : VAR real
nza : VAR nzreal

th1 : LEMMA a*a >= 0

2 ProofLite is freely available from http://research.nianet.org/~munoz/ProofLite.

th2 : LEMMA a <= b IMPLIES a*abs(a) <= b*abs(b)
th3 : LEMMA a*a >= 0
th4 : LEMMA (nza/2)*(2/nza) = 1
th3a : LEMMA a*a >= 0
th4a : LEMMA (nza/2)*(2/nza) = 1
th_5_6 : LEMMA EXISTS (a) : 5 < a AND a < 6
th_6_7 : LEMMA EXISTS (a) : 6 < a AND a < 7
th_8 : LEMMA EXISTS (a,b) : a+b = 8
th_9 : LEMMA EXISTS (a,b) : a+b = 9

END thms

The invocation

% proveit thms

reruns all the proofs in thms.pvs, writes the output into thms.out, and prints
the following summary information:

Processing thms.pvs. Writing output to file thms.out.

Proof summary for theory thms
th1...................................proved - complete
th2...................................proved - complete
th3...................................proved - complete
th4...................................proved - complete
th3a..................................proved - complete
th4a..................................proved - complete
th_5_6................................proved - complete
th_6_7................................proved - complete
th_8..................................proved - complete
th_9..................................proved - complete
Theory totals: 10 formulas, 10 attempted, 10 succeeded (2.63 s)

Grand Totals: 10 proofs, 10 attempted, 10 succeeded (2.63 s)

The utility proveit supports several options, e.g,

– The option -clean removes .pvscontext and other binary files. This option
is useful when the system has died abruptly and the context is left in an
inconsistent state.

– The option -importchain reruns the proofs of all imported theories as well.
– The option -prooftraces outputs the proof traces, which are needed for

regression testing. Unfortunately, this option does not provide yet all the
functionality of pvs-validate. This extension is planned for a future release.

– The option -package load a PVS strategy package such as Manip [16],
Field [8], PVSio [5] or Interval [7]. For instance, if the proofs in thms.pvs
use strategies defined in Field, the invocation has the form:
% proveit -package Field thms

– The option -help prints the complete set of options supported by the utility.

4.2 ProofLite Scripts

ProofLite scripts are proof scripts written in specially formatted comments that
resides in regular .pvs files. The simplest type of ProofLite script has the form

%|- <id> : PROOF <step> QED

where <id> is the name of an existing formula and <step> is a proof command
supported by the PVS strategy language [13].

For instance, the proof of th1 can be written in the file thms.pvs using the
ProofLite script:

%|- th1 : PROOF (grind) QED

ProofLite scripts can extend to multiple lines. In this case, each line is preceded
by the special comment “%|-”. For instance, the proof of lemma th2 can be
written:

%|- th2 : PROOF
%|- (then
%|- (skeep)
%|- (spread (case "a >= 0")
%|- ((grind :theories "real_props")
%|- (then (grind :theories "real_props")
%|- (mult-ineq -1 -1 :signs (- -))
%|- (assert)))))
%|- QED

Normally, ProofLite scripts are just comments to the PVS system. Indeed,
unless explicitly requested by the user, ProofLite scripts are not installed as
proofs. The ProofLite utility proveit automatically installs proof scripts into
their respective formulas when processing a .pvs file. To prevent accidental
overriding of proofs, by default, proveit does not install proof scripts in formulas
that have an existing proof. To override existing proofs, the proveit option
-force must be used. Installation of ProofLite scripts can also be done through
the interactive PVS Emacs interface as described in Section 4.3.

Proof script sharing is supported by ProofLite. For instance, the following
ProofLite script associates the same proof script to lemmas th3 and th4:

%|- th3 : PROOF
%|- th4 : PROOF
%|- (grind)
%|- QED

The proof sharing mechanism is generalized to name-matching formulas,
where the character “*” in the script identifier stands for an arbitrary sequence
of one or more characters. In the following example, all formulas in thms.pvs
whose names match the string “th*a”, e.g., th3a and th4a, share the same proof
command:

%|- th*a : PROOF (then (skeep) (grind-reals)) QED

Proof scripts are not restricted to user-defined formulas. The following ProofLite
script associates the same proof command to all TCCs in a theory:

%|- *_TCC* : PROOF <step> QED

Name-matching lemmas can be used to create proof macros. In a ProofLite
script %|- <id> : PROOF <step> QED, the proof command <step> may contain
the special symbols $n, where n ≥ 0. The symbol $0 refers to the name of the
lemma that matches <id>. The symbol $n, where n ≥ 1, refers to n-th matching
string, from left to right, in the lemma’s name. Consider the ProofLite script

%|- th_*_* : PROOF
%|- (then (skip-msg "Proving Lemma: $0")
%|- (inst 1 "$1 + ($2 - $1)/2")
%|- (grind))
%|- QED

The string th_*_* matches the name th_5_6. Therefore, the symbols $0, $1,
and $2 refers to th_5_6, 5, and 6, respectively. In this case, the proof command
associated with lemma th_5_6 is

(then (skip-msg "Proving Lemma: th_5_6")
(inst 1 "5 + (6 - 5)/2")
(grind))

Moreover, the string th_*_* matches the name th_6_7. Therefore, the proof
command associated with lemma th_6_7 is

(then (skip-msg "Proving Lemma: th_6_7")
(inst 1 "6 + (7 - 6)/2")
(grind))

Proof macros are particularly useful when PVS specifications are automati-
cally generated and proof lemmas follow a particular naming convention. How-
ever, the parameters enabled by this mechanism are limited to substrings of
valid identifiers. ProofLite supports a more general parameterization mechanism.
Parametric ProofLite scripts have the form:

%|- <id>[e1;...;en]: PROOF
%|- <step>
%|- QED

In <step>, the symbol #n is substituted by en. Consider the ProofLite script

%|- th_8[2;6] : PROOF
%|- th_9[4;5] : PROOF
%|- (then (skip-msg "Proving Lemma: $0")
%|- (inst 1 "#1" "#2")
%|- (grind))
%|- QED

In this case, the proof command associated with lemma th_8 is

(then (skip-msg "Proving Lemma: th_8")
(inst 1 "2" "6")
(grind))

Moreover, the proof command associated with lemma th_9 is

(then (skip-msg "Proving Lemma: th_9")
(inst 1 "4" "5")
(grind))

4.3 Proof Script Management Through the PVS Emacs Interface

In general, a PVS package is loaded into the interactive PVS Emacs interface
through the Emacs command M-x load-prelude-library, which will prompt
the user for a package name, e.g., ProofLite. This has to be done only the first
time that the package is used in a working context or after the .pvscontext file
has been removed.

Once ProofLite has been loaded into the PVS Emacs interface, a ProofLite
script can be installed as the default proof of a formula by placing the cursor on
the script and issuing the Emacs command M-x install-prooflite-script.
If the ProofLite is shared by several formulas, all proofs are simultaneously in-
stalled. However, this command does not install a proof in formulas that already
have a default proof. The Emacs commands M-x install-prooflite-script!
forces the installation of a proof script regardless the existence of a previous
proof.

All the ProofLite scripts in a theory can be installed at once through the
Emacs commands M-x install-prooflite-scripts-theory and
M-x install-prooflite-scripts-theory!. As expected, the latter command
forces the installation of proof scripts in formulas that have an existing proof.

The default proof of a formula can be converted into a ProofLite script by
placing the cursor on the formula and issuing the Emacs command
M-x insert-prooflite-script. The script is automatically inserted in the .pvs
file after the formula. Alternatively, the Emacs command
M-x display-prooflite-script prompts the user for a formula name and,
then, puts the ProofLite script of the formula’s default proof in the Emacs buffer
ProofLite. Afterward, the script can be modified and manually inserted any-
where in the .pvs file.

Key abbreviations for all these commands are listed in the following table.

Emacs Command Key Abbreviation
M-x install-prooflite-script C-c ip
M-x install-prooflite-script! C-c !p
M-x install-prooflite-scripts-theory C-c it
M-x install-prooflite-scripts-theory! C-c !t
M-x insert-prooflite-script C-c 2p
M-x display-prooflite-script C-c dp

5 Applications

ProofLite has been extensively and successfully used in verification projects at
the National Institute of Aerospace and NASA Langley.

Reference [2] presents a tool for mechanical verification of numerical bounds
using interval arithmetic. The formal verification is performed in PVS. However,
all the technical burden of proving properties in a proof assistant system is
hidden from the user. In this case, a C++ module computes bounds of numerical
expressions and, then, generates proof obligations, in the form of PVS formulas,
along with ProofLite scripts that discharge the obligations. Formulas and proof
scripts are written in a series of .pvs files that are processed in batch mode via
the command line utility proveit. The tool was used to formally check that
a polynomial approximation, taken from a critical aeronautical application, is
close to about one unit in the last place of the exact transcendental function, i.e.,
the relative error is bounded by 1.36 × 10-6. The C++ module generated about
30000 PVS lemmas, with their respective proof scripts, that were mechanically
checked on a high performance cluster.

Reference [6] reports on the formal verification of an operational concept for
air traffic management in a self controlled airspace. The operational concept is
modeled as a hybrid non-deterministic asynchronous state transition system. A
tool, implemented in PVSio [5] and formally verified in PVS, explicitly computes
the set of reachable states of the system. From this set, PVS lemmas, and their
respective ProofLite scripts, are generated. All together, the lemmas guarantee
that under nominal operations the minimum separation between two aircraft is
higher than a given safety threshold. In total, 117 lemmas were generated and
mechanically verified in batch mode via the ProofLite utility proveit.

6 Conclusion

ProofLite is PVS package for batch proving and proof scripting that can be
used by regular PVS users. The basic capabilities provided by the package are
commonly found in comparable theorem provers such as Coq [14], HOL [4], and
ACL2 [3].

The ProofLite scripting notation supports several forms of proof sharing
and proof reuse. Modern theorem provers provide mechanisms to conservatively
extend the proof search and automation power of their systems via user-defined
strategies. Proof scripting seems to provide a higher level of abstraction that
may be appropriate for certain kind of problems and domains.

Future versions of ProofLite will fully support regression testing and will
continue to explore new ways of sharing and reusing proofs.

Acknowledgment

During a summer visit to NIA in August 2005, Florent Kirchner rewrote most
of the new (and faster) code of the proveit utility.

References

1. M. Archer. TAME: Using PVS strategies for special-purpose theorem proving.
Ann. Math. Artif. Intell, 29(1-4):139–181, 2000.

2. M. Dumas, G. Melquiond, and C. Muñoz. Guaranteed proofs using interval arith-
metic. In Proceedings of the 17th IEEE Symposium on Computer Arithmetic,
ARITH-17, Cape Cod, Massachusetts, 2005.

3. Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version
of nqthm. In Compass’96: Eleventh Annual Conference on Computer Assurance,
page 23, Gaithersburg, Maryland, 1996. National Institute of Standards and Tech-
nology.

4. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

5. C. Muñoz. Rapid prototyping in PVS. Report NIA Report No. 2003-03,
NASA/CR-2003-212418, NIA-NASA Langley, National Institute of Aerospace,
Hampton, VA, May 2003.

6. C. Muñoz and G. Dowek. Hybrid verification of an air traffic operational concept.
In Proceedings of IEEE ISoLA Workshop on Leveraging Applications of Formal
Methods, Verification, and Validation, Columbia, Maryland, 2005.

7. C. Muñoz and D. Lester. Real number calculations and theorem proving. In J. Hurd
and T. Melham, editors, Proceedings of the 18th International Conference on Theo-
rem Proving in Higher Order Logics, TPHOLs 2005, volume 3603 of Lecture Notes
in Computer Science, pages 195–210, Oxford, UK, 2005. Springer-Verlag.

8. C. Muñoz and M. Mayero. Real automation in the field. Technical Report
NASA/CR-2001-211271 Interim ICASE Report No. 39, ICASE-NASA Langley,
ICASE Mail Stop 132C, NASA Langley Research Center, Hampton VA 23681-
2199, USA, December 2001.

9. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992. Springer-Verlag.

10. S. Owre and N. Shankar. Writing PVS proof strategies. In Myla Archer, Ben Di
Vito, and César Muñoz, editors, Design and Application of Strategies/Tactics in
Higher Order Logics (STRATA 2003), number CP-2003-212448 in NASA Con-
ference Publication, pages 1–15, Hampton, VA, September 2003. NASA Langley
Research Center. The complete proccedings are available at http://research.

nianet.org/fm-at-nia/STRATA2003/.

11. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Sys-
tem Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
September 1999.

12. Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report
SRI-CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA,
August 1997.

13. N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide. Computer Science Laboratory, SRI International, Menlo Park, CA, Septem-
ber 1999.

14. The Coq Team. The Coq proof assistant: Reference manual: Version 7.2. Technical
Report RT-0255, INRIA, Rocquencourt, France, February 2002. Available at http:
//coq.inria.fr/doc/main.html.

15. B. Di Vito. High-automation proofs for properties of requirements models. STTT,
3(1):20–31, 2000.

16. B. Di Vito. A PVS prover strategy package for common manipulations. Report
NASA/TM-2002-211647, NASA Langley Research Center, Hampton, VA 23681-
0001, 2002.

