
Random Testing in PVS

Sam Owre

SRI International, Computer Science Laboratory
333 Ravenswood Avenue, Menlo Park, CA 94025, USA

owre@csl.sri.com

Abstract. Formulas are difficult to formulate and to prove, and are
often invalid during specification development. Testing formulas prior
to attempting any proofs could potentially save a lot of effort. Here we
describe an implementation of random testing in the PVS verification
system.

1 Introduction

The PVS system has been used extensively for many verifications,
both large and small. For true theorems there are many techniques
available, including resolution, powerful decision procedures, and au-
tomatic rewriting. But interactive proving is often difficult and time
consuming; and often during development one is uncertain if the
formulas are actually true. More often than not the theorem being
attempted is actually false. PVS has an interactive theorem prover,
which is some use in finding where a theorem is false, as one can
explore the proof tree in as much detail as desired. But this can be
very time-consuming, and it is often difficult to relate the context of
the given proof state to the original specification. What is needed is
an easy way to test specifications in order to find trivial bugs before
attempting any proofs.

To aid in such situations, we have recently added random testing
to PVS. The work describe here was based on the work done in simi-
lar systems. Claessen and Hughes [CH00] developed the QuickCheck
tool for random testing of Haskell programs, and used it on a spec-
ification of unification and the Lava embedded circuit description
language. Berghofer and Nipkow [BN04] applied these techniques
to Isabelle/HOL, including extensions to inductive datatypes and
inductive predicates; they then applied it to a simple operational
semantics and a specification of Red-Black trees. Dybjer, Haiyan,



and Takeyama [DHT03] implemented random testing in Agda/Alfa,
where it is combined with theorem proving for dependent types; they
used it to verify a BDD implementation.

In the rest of this paper we give a brief overview of PVS, describe
the random test generator, and give some examples of its use. We
conclude with some plans for the future.

2 A Brief Description of PVS

PVS (Prototype Verification System) is based on classical higher-
order logic, with a rich type system including base types (boolean,
integer, real, etc.), functions, tuples, records, cotuples, and recursive
datatypes. It also allows subtypes derived from predicates, which
means that typechecking may be undecidable. The typechecker does
not attempt to prove everything, but outputs proof obligations in
the form of type correctness conditions (TCCs).

The PVS system includes a number of components to aid de-
velopment, including an Emacs-based user interface, parser, pret-
typrinter, typechecker, interactive theorem prover, model checker,
ground evaluator, abstractor, and HTML generator. PVS is imple-
mented in Common Lisp.

The components of primary interest for this discussion are the
theorem prover and ground evaluator. The interactive theorem prover
is based on the sequent calculus, the goal is for the user to construct
a tree of sequents in which each leaf is true. A sequent consists of
a set of antecedents (hypotheses) and a set of consequents (conclu-
sions); the meaning is that the conjunction of antecedents implies
the disjunction of consequents. Initially the proof tree consists of a
single sequent with a single consequent which is the lemma to be
proved.

The user guides the proof by issuing proof commands. In general
a proof command, if it succeeds, adds one or more children to the
current node of the proof tree, and makes one of the child leaves the
new current goal. When a branch is proved, control moves to a new
sibling of the current node, until there are no more unproved leaves.

The ground evaluator generates efficient Lisp code from a subset
of PVS [Sha99]. It includes extensive analysis of array, record, and
tuple updates to ensure that, where safe, destructive updates may



be used in place of copying. Crow et al. [COR+01] describe the use
semantic attachments to compute values, create side effects, and an-
imate specifications. This has been extensively augmented by Cesar
Munoz in PVSio [Muñ03], in which PVS becomes almost program-
ming environment, and can even be used as a scripting language.

3 Random Test Generation

The heart of the random test generator is a set of methods that
create random test generators for each type class in PVS. For each
type of PVS, a random test generator is created to generate values;
each invocation of the random test generator will produce a random
value of the associated type. The random test values are used to
instantiate a given formula, which is then evaluated by the ground
evaluator. If it is found to be false, the test values are reported.

For base types, values are generated using the Common Lisp
random function. Booleans, enumerated types, etc. may be handled
directly in this way. For unbounded base types such as integers, a
bound may be given; the default is 100. Rationals are generated by
generating two integers x and y; when y/ = 0 then x/y is returned.1

Rationals are also used to generate random reals.
Random generators for subtypes presents a bit of a problem. Cur-

rently the generator generates a value for the supertype, then checks
whether the result is in the subtype by evaluating the subtype pred-
icate on that value. If unsuccessful, it continues doing this until a
counter is decremented to zero. How well this works in practice de-
pends both on how often the randomly generated value satisfies the
predicate, and how computationally expensive the predicate is. An
example where this would likely fail is generating a prime number
below 10 million. Another example where this would fail is gener-
ating a list of integers, where each element is twice as big as the
preceding element. To overcome this, some of the subtypes defined
in the PVS prelude such as natural numbers, even and odd inte-
gers, and subranges, have specialized generators defined in order to
quickly generate valid values.

1 One advantage of doing this in Common Lisp is that there is no issue with overflow,
as bignums are seamlessly integrated. Dividing one integer by another yields an
exact rational, not an approximate floating point number.



The random generators for tuple and record types just build on
the generators for the component types. The only slight difficulty is
with dependencies, which are handled by substituting the randomly
generated values for earlier types into subsequent dependent types
as the components are processed.

Cotuples of the form T1 + . . . + Tn are handled by first randomly
selecting a number i between 1 and n, then invoking the random
generator for that type to create a value v, returning ini(v).

Function types are handled by creating a closure that memoizes
its values. Thus when a randomly generated function is applied, it
checks to see if its argument has already been seen, in which case
it returns the associated value. Otherwise, it randomly generates a
value in the range type, and saves the argument, value pair for future
invocations. This allows one to handle higher-order formulas, such
as

FORALL (f: [int -> int], x, y, z: int):

f(x) + f(f(y)) < f(f(f(z)))

Inductive data types are handled as described in [BN04]. Basi-
cally, there is a size parameter used to construct datatype elements
whose term constructions are bounded by that size. Thus if the size
is 4, lists of length at most 4 could be generated (including null),
and trees with depth at most 4 would be generated. A List of trees
could also be generated, where the list could have at most 4 elements,
and each element is a tree of depth at most 4.

4 Using the Random Test Generator

The random test generator may be used as part of ground evaluation,
or during a proof. In either case the test is driven by a universally
quantified formula, and a test is run by generating a series of test
vectors; where a test vector associates a value with each univer-
sally quantified variable of the formula, based on its type. A given
test vector is checked by instantiating the formula with the vector,
and invoking the ground evaluator on the result. It iterates through
the vectors until one is found for which the ground formula returns
false, at which point it normally prints out the vector and termi-
nates.



In the ground evaluator, the formula is typed in the form of the
test command, for example

(test "FORALL (n: nat): even?(n)")

In the theorem prover, the command is random-test, and the for-
mula is derived using the current sequent. By default, the formula it
uses is the conjunction of the antecedents implies the disjunction of
the consequents, universally closed over the Skolem constants. The
user can select which formulas to include in the test. Note that it is
easy to test arbitrary formulas in the prover without exiting—simply
use the case command to introduce an arbitrary formula, and only
include it in the random test.

There are a number of parameters to the random test commands;
these are the same whether in the ground evaluator or the prover.2

The count controls how many test vectors to try. The size and dt-
size parameters control how big to make base types and inductive
datatypes, respectively. The all? says to keep looking for counterex-
amples even if one is found, and the verbose? flag indicates that all
test vectors and results should be displayed, not just the counterex-
amples. The subtype-gen-bound is used to control how hard to search
for an element that satisfies a subtype predicate.

Recall that the ground evaluator only works with ground terms.
The prover is perfectly happy with uninterpreted types and con-
stants, but terms involving these cannot be evaluated. Most proofs,
however, involve uninterpreted types and constants. For this rea-
son, there is an instance parameter, that may be used to provide
a theory instance, giving ground types and constants for the theory
parameters, and mappings for the uninterpreted types and constants
that your formula references. For example, if you are working on a
formula in a theory of the form

Th[T: TYPE, c: T] =

BEGIN

myT: TYPE

myC: myT

...

END Th

2 There is currently one important difference—the prover supports keyword argu-
ments, while the ground evaluator only has positional arguments.



Then you could give an instance argument of

Th[int, 0]{{myT := [real, real -> real], myC := + }}

Of course, if you are not careful, you could pick an instance for which
the formula is true, even though the fully general form may not be
valid.

5 Examples

The first example we tried was red/black trees, which is the ex-
ample done in [CH00]. In general, it was not very helpful, as PVS
is primarily for specification, not implementation, so the algorithm
was straightforward to define, and there were no errors that ran-
dom testing could find. It was interesting in another way, however.
The normal definition of a path of a Red-Black tree is a sequence of
Red-Black trees, where the first element is the entire tree, and each
subsequent element is a child of the preceding tree; the last element
is a leaf. Thus it is a subtype of finite sequences of trees. But gener-
ating a random sequence of trees that just happens to be a path is
very unlikely. To handle this, we instead defined a path over a tree
as a list of booleans, where true represents the left child, and false
represents the right child. Thus for a given tree, a path is a sequence
of booleans that is the right length to reach a leaf node. With this
definition, it became easy to randomly generate paths.

Another example we worked with is a flawed definition of take

and drop, as described in [BN04]. Here is their specification in PVS.

ex1[T: TYPE]: THEORY

BEGIN

i, j, n: VAR nat

l: VAR list[T]

take(n, l): RECURSIVE list[T] =

CASES l OF

null: null,

cons(x, xs):

IF n = 0 THEN null ELSE cons(x, take(n - 1, xs)) ENDIF

ENDCASES

MEASURE n



drop(n, l): RECURSIVE list[T] =

CASES l OF

null: null,

cons(x, xs):

IF n = 0 THEN l ELSE drop(n - 1, xs) ENDIF

ENDCASES

MEASURE n

take_drop_comm: THEOREM take(j, drop(i, l)) = drop(i, take(j, l))

END ex1

Here is the result of starting the proof and running random-test:

take_drop_comm :

|-------

{1} FORALL (i, j: nat, l: list[T]):

take(j, drop(i, l)) = drop(i, take(j, l))

Rule? (random-test :instance "ex1[int]")

The formula is falsified with the substitutions:

i ==> 4

j ==> 3

l ==> (: -4, -64, 0, -57, 39 :)

No change.

take_drop_comm :

|-------

{1} FORALL (i, j: nat, l: list[T]):

take(j, drop(i, l)) = drop(i, take(j, l))

Rule?

It is easy to check that this is, indeed, a counterexample. In practice,
this may need to be tried several times, or with the count argument
set higher than the default 10. To simulate what QuickCheck does,
simply run with size and dtsize set, for example,

Rule? (random-test :instance "ex1[int]" :dtsize 2 :size 2 :count 100)

The formula is falsified with the substitutions:

i ==> 1

j ==> 1

l ==> (: 1, 0 :)

The last example illustrates higher-order functions.



|-------

{1} FORALL (f: [int -> int], x, y, z: int): f(x) + f(f(y)) < f(f(f(z)))

Rule? (random-test)

The formula is falsified with the substitutions:

f ==> -89 -> -86, -92 -> -92, -86 -> -33, -4 -> 99

x ==> -4

y ==> -89

z ==> -92

Here we see that the function built up has a finite number of pairs
given. What this means is that any function of type [int -> int]

that contains these pairs will falsify the formula. The key thing is
that the random generator memoizes the function, so that if, for
example, z is assigned to 2, and f(2) is 2, then f(f(z)) is also 2.

6 Conclusion

The random test facility was only recently added to PVS, and we are
still experimenting with it. It is in the PVS release candidate at ftp:
//ftp.csl.sri.com/users/owre/pvs-release-candidate-2. Some
plans for the future include:

– Allow users to define random test generators for specific types.
This should be done as PVS function attachments, rather than
in Lisp. For example, for Red-Black tree paths, one could spec-
ify a random generator that randomly generates a Red-Black
tree, then randomly selects a child, and continues until a leaf
is reached. The result would be a path by construction, and it
would be very fast, as the subtype constraint would not need to
be tested.

– Allow for different random distributions, instead of the built-in
uniform distribution.

– Provide handling for inductive definitions as described in [BN04].

– Handle more higher-order types, in particular, those arising from
sets (e.g. A = B ∪ C), where the domain is infinite (or simply
very large).

– Try more serious experiments to see how effective this is as a
proof aid.



References

[BN04] Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL. In
2nd International Conference on Software Engineering and Formal Methods,
pages 230–239, Beijing, China, September 2004. IEEE Computer Society.

[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In International Conference on Functional Pro-
gramming, pages 268–279, Montreal, Canada, September 2000. Association
for Computing Machinery.

[COR+01] Judy Crow, Sam Owre, John Rushby, N. Shankar, and Dave Stringer-
Calvert. Evaluating, testing, and animating PVS specifications. Techni-
cal report, Computer Science Laboratory, SRI International, Menlo Park,
CA, March 2001. Available from http://www.csl.sri.com/users/rushby/

abstracts/attachments.
[DHT03] Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Combining testing and

proving in dependent type theory. In Theorem Proving in Higher Order
Logics, volume 2758 of Lecture Notes in Computer Science, pages 188–203,
August 2003.

[Muñ03] César Muñoz. Rapid Prototyping in PVS. National Institute of Aerospace,
Hampton, VA, 2003. Available from http://research.nianet.org/
∼munoz/PVSio/.

[Sha99] N. Shankar. Efficiently executing PVS. Project report, Computer Science
Laboratory, SRI International, Menlo Park, CA, November 1999. Available
at http://www.csl.sri.com/users/shankar/papers/PVSeval.ps.gz.


