
Slightly expanded version of a paper presented at the Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’97), Enschede, The Netherlands, April
1997. Springer-Verlag Lecture Notes in Computer Science Vol. 1217, pp. 366–383.

Integration in PVS:
Tables, Types, and Model Checking?

Sam Owre, John Rushby, Natarajan Shankar

Computer Science Laboratory, SRI International,
Menlo Park, CA 94025, USA

Abstract. We have argued previously that the effectiveness of a verifi-
cation system derives not only from the power of its individual features
for expression and deduction, but from the extent to which these capabil-
ities are integrated: the whole is more than the sum of its parts [20,21].
Here, we illustrate this thesis by describing a simple construct for tabu-
lar specifications that was recently added to PVS. Because this construct
integrates with other capabilities of PVS, such as typechecker-generated
proof obligations, dependent typing, higher-order functions, model check-
ing, and general theorem proving, it can be used for a surprising variety
of purposes. We demonstrate this with examples drawn from hardware
division algorithms and requirements specifications.

1 Introduction

Persuaded by the advocacy of David Parnas and others [15], we recently added
a construct for tabular specification to PVS [12]. The construct generates proof
obligations to ensure that the conditions labeling the rows and columns are dis-
joint and exclusive. This simple capability has been found useful by colleagues
at NASA and Lockheed-Martin, who applied it in requirements analysis for
Space Shuttle flight software [2,18]. The capability becomes rather richer in the
presence of dependent typing, and in this form it has been used to verify the
accessible region in a quotient lookup table for SRT division [19]. When com-
bined with other features of the PVS specification language, the table construct
provides some of the attractive attributes of the TableWise [8] and SCR [6] spec-
ification methods. Because these constructions are performed in the context of a
full verification system, we are able to use its theorem prover and model checker
to establish invariant and reachability properties of the specifications concerned,
and are able also to compose specifications described by separate tables and to
establish refinement and equivalence relations between state machines specified
in this manner.

? This work was supported by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under contract F49620-95-C0044 and by the National
Science Foundation under contract CCR-9509931.

1

2 Basic Tables

Tables can be a convenient way to specify certain kinds of functions. An example
is the function sign(x), which returns −1, 0, or 1 according to whether its integer
argument is negative, zero, or positive. As a table, this can be specified as follows.

x < 0 x = 0 x > 0
sign(x) = −1 0 +1

This is an example of a piecewise continuous function that requires definition by
cases, and the tabular presentation provides two benefits.

– It makes the cases explicit, thereby allowing checks that none of them overlap
and that all possibilities are considered.

– It provides a visually attractive presentation of the definition that eases
comprehension.

The first of these benefits is a semantic issue that is handled in PVS by the COND
construct; the second is a syntactic issue that is handled in PVS by the TABLE

construct, which builds on COND.

Before we introduce these constructs, we should mention that the PVS spec-
ification language is a higher-order logic that supports both predicate subtypes
and dependent types, and that the system provides strong assurances that defini-
tional constructs (such as recursive function definitions) are conservative [13,14].
Some of the checks necessary to ensure type-correctness and conservative ex-
tension are not algorithmically decidable; in these cases, PVS generates Type
Correctness Conditions (TCCs), which are obligations that must be discharged
by theorem proving. PVS provides a powerful interactive theorem prover that
includes decision procedures for linear arithmetic and other theories, and its de-
fault strategies are often able to discharge TCCs automatically; in more difficult
cases, the user must guide the theorem prover interactively. Specifications with
false TCCs are considered malformed and no meaning is ascribed to them. PVS
allows proof obligations to be postponed, but keeps track of all unsatisfied obli-
gations; a specification is not considered fully typechecked, and its theorems are
considered provisional, until all TCCs have been proved.

2.1 The PVS COND Construct

Standard PVS language constructions for specification by cases are the tradi-
tional IF-THEN-ELSE, and a pattern matching CASES expression for enumerating
over the constructors of an abstract data type. A COND construct has recently
been added to these. Its general form is shown in 1 , where the ci are Boolean
expressions and the ei are values of some type t. (PVS has subtypes and over-
loading, so the types of the individual ei must be “unified” to yield the common
supertype t.) The keyword ELSE can be used in place of the final condition cn.
The construct can appear anywhere that a value of the type of t is allowed.

2

1COND c1 → e1,
c2 → e2,
· · ·
cn → en

ENDCOND

2IF c1 THEN e1
ELSIF c2 THEN e2
· · ·
ELSE en
ENDIF

Exactly one of the ci is required to be true; because PVS already supports proof
obligations in the form of TCCs, it is easy to enforce this requirement by causing
each COND to generate two TCCs as follows.

– Disjointness requires that each distinct ci, cj pair is disjoint.
– Coverage requires that the disjunction of all the ci is true.

The coverage TCC is suppressed if the ELSE keyword is used; also the ci, cj
component of the disjointness TCC is suppressed when ei and ej are syntactically
identical.

A COND has meaning only if its TCCs are true, in which case the general
COND expression of 1 is assigned the same meaning as (and is treated internally
as) the IF-THEN-ELSE construction shown in 2 . Notice that the condition cn
does not appear in the IF-THEN-ELSE translation: if this condition was given
as an explicit ELSE in the COND, then the “fall through” default is exactly what
is required; otherwise, the coverage TCC ensures that cn is the negation of the
disjunction of the other ci, and the “fall through” is again correct. Because COND

is treated internally as an IF-THEN-ELSE, reasoning involving COND requires no
extensions to the PVS theorem prover.

Using COND, we can specify the sign function as follows.

signs: TYPE = { x: int | x >= -1 & x <= 1}
x: VAR int

sign_cond(x): signs = COND

x < 0 -> -1,

x = 0 -> 0,

x > 0 -> 1

ENDCOND

This generates the following TCCs, both of which are discharged by PVS’s de-
fault strategy for TCCs in fractions of a second.

% Disjointness TCC generated (line 10) for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

sign_cond_TCC2: OBLIGATION (FORALL (x: int):

NOT (x < 0 AND x = 0)

AND NOT (x < 0 AND x > 0)

AND NOT (x = 0 AND x > 0));

% Coverage TCC generated (line 10) for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

sign_cond_TCC3: OBLIGATION (FORALL (x: int): x < 0 OR x = 0 OR x > 0);

3

The variant specification that uses an ELSE in place of the condition x > 0

generates a simpler disjointness TCC (just the first of the three conjuncts in
sign cond TCC2), and no coverage TCC.

2.2 The PVS TABLE Construct

PVS has TABLE constructs that provide a fairly attractive input syntax for one-
and two-dimensional tables and that are LATEX-printed as true tables (the ex-
ample Parnas Fig1 that appears later illustrates this). Their semantic treatment
derives directly from the COND construct.

2.2.1 One-Dimensional Tables. The simplest tables in PVS are one-
dimensional. In their vertical format, they simply replace the -> and , of COND
cases by | and ||, respectively, and introduce each case with |; they also add a
final || and change the keyword from COND to TABLE. The sign example is there-
fore transformed from a COND to the TABLE shown in 3 . Note that the horizontal
lines are simply comments (comments in PVS are introduced by %).

3sign_vtable(x): signs = TABLE

%-------------%
| x < 0 | -1 ||
%-------------%
| x = 0 | 0 ||
%-------------%
| x > 0 | 1 ||

ENDTABLE %-------------%

4sign_htable(x): signs = TABLE

%-------------------%
|[x<0 | x=0 | x>0]|
%-------------------%
| -1 | 0 | 1 ||

ENDTABLE %-------------------%

One-dimensional horizontal tables present the information in a different order,
and use |[...]| to alert the parser to this fact, as illustrated in 4 .

Both these tabular specifications are equivalent to sign cond, generate ex-
actly the same TCCs, and are treated the same in proofs. Notice that tables
require no extensions to the PVS theorem prover, and the full repertoire of
proof commands may be applied to constructions involving tables—for example,
it is possible to rewrite with an expression whose right hand side is a table.
Note, however, that PVS remembers the syntactic form used in a specification
and always prints it out the same way it was typed in; thus, the prover will print
a table as a table, even though it is treated semantically as a COND (which is
itself treated as an IF-THEN-ELSE). Of course, the special syntactic treatment is
lost once a proof step (e.g., one that “lifts” IF-THEN-ELSE constructs to the top
level) has transformed the structures appearing in a sequent.

2.2.2 Blank Entries. Suppose we reformulated our sign example to take a
natural number, rather than an integer, as its argument. The x < 0 case can no
longer arise and can be omitted from the table. In some circumstances, however,
we may wish to make it patently clear that this case should not occur and we
can do this by including the case, but with a blank entry for the value of the
expression.

4

sign_htable(x: nat): signs = TABLE %-------------------%
|[x<0 | x=0 | x>0]|
%-------------------%
| | 0 | 1 ||

ENDTABLE %-------------------%

The presence of blank entries changes the coverage TCC: this must now ensure
that the disjunction of all the conditions with non-blank entries is true. Notice
this requires a TCC to be generated even when an ELSE case is present.

In one-dimensional tables, blank entries can always be removed by simply
deleting the entire case; this is not so with two-dimensional tables, however,
where the accessibility of an entry may depend on the conditions labeling both
its row and column. We describe an example later.

2.2.3 Enumeration Tables. These are a syntactic variation that provide
more succinct representation when the conditions to a table are all of the form
x = expression for some single identifier x. In an enumeration table, the identifier
concerned follows the TABLE keyword, and the conditions of the table simply list
the expressions; a two-dimensional example appears below in 5 .

Enumeration tables are an important special case because their TCCs are
often easily decidable, and this allows some important optimizations. Observe
that the number of conjuncts in a disjointness TCC grows as the square of
the number of conditions; when enumerating over the values of an enumeration
type, it is not uncommon to have tens or hundreds of conditions, and thus
thousands of conjuncts in the disjointness TCC. It is unwieldy and slow to display
such massive TCCs to the user. PVS therefore recognizes this case and treats
it specially: when the expressions in an enumeration table are all constructors
of a single datatype (and the values of an enumeration type are exactly these),
the disjointness and coverage conditions are trivially decidable and are checked
internally by the typechecker, which also translates such tables into a datatype
CASES expression, rather than a COND.2 Another special case arises when the
expressions of an enumeration table are all literal values of some type (the usual
case is values from some range of integers); again, the disjointness TCC is easily
decidable and can be checked internally by the typechecker (the coverage TCC
can require theorem proving and is generated normally). A table is immediately
flagged as illegal if such internal checks reveal a false TCC.

2.2.4 Two-Dimensional Tables. Two-dimensional tables are treated as
nested COND (or CASES) constructs; more particularly, the columns are nested
within the rows. Here is a trivial example of a two-dimensional enumeration
table in which the rows enumerate the values of a type state and the columns
enumerate the values of a type input.

2 The prover can provide greater automation for the CASES expression. The user could
use a CASES construct directly in the one-dimensional case; the main benefit in pro-
viding the translation automatically is with two-dimensional tables.

5

5example(state,input): some_type = TABLE state , input

%---------%
|[x | y |]

%-----------------%
| a | p | q ||
%-----------------%
| b | q | q ||

ENDTABLE %-----------------%

This translates internally to the following.

COND

state = a -> COND input = x -> p, input = y -> q ENDCOND,

state = b -> COND input = x -> q, input = y -> q ENDCOND

ENDCOND

Notice that this translation causes disjointness and coverage TCCs for the
columns to be generated several times—once for each row. For example, the
coverage TCCs generated for the two inner CONDs above have the following form.

coverage a: OBLIGATION state = a IMPLIES input = x OR input = y

coverage a: OBLIGATION state = b IMPLIES input = x OR input = y

These appear redundant, so we might be tempted to use the following, apparently
equivalent, translation.

LET x1 = COND input = x -> p, input = y -> q ENDCOND,

x2 = COND input = x -> q, input = y -> q ENDCOND

IN COND state = a -> x1, state = b -> x2 ENDCOND

This generates the following single, simple coverage TCC for the columns.

coverage_TCC: OBLIGATION input = x OR input = y

The problem with this translation is that there may be subtype TCCs gener-
ated from the terms corresponding to p and q that must be conditioned on the
expressions corresponding to a and b in order to be provable. Here is an example
due to Parnas [15, Figure 1] that illustrates this. We exhibit this example in the
form output by the PVS LATEX-printer.

Parnas Fig1((y, x : real)) : real =

y = 27 y > 27 y < 27

x = 3 27 +
√

27 54 +
√

27 y2 + 3

x < 3 27 +
√
− (x − 3) y +

√
− (x − 3) y2 + (x − 3)2

x > 3 27 +
√
x − 3 2 × y +

√
x − 3 y2 + (3 − x)2

The subtype constraint on the argument to the square root function (namely,
that it be nonnegative) generates TCCs in the second and third rows that are true
only when the corresponding row constraints are taken into account. The LET

form translation loses this information. The advantage of the simple translation,
which is the one used in PVS, is that it provides more precise (i.e., weaker but
still adequate) TCCs, and therefore admits more specifications.

6

2.3 Applications

The PVS table constructs described above have been used in several applications
performed by ourselves and others—indeed, some elements in the PVS treatment
of tables (notably, blank entries, and the optimizations for enumeration tables)
evolved in response to these applications.

In one application, PVS is being employed in analysis of new requirements
documented in “Change Requests” (CRs) for the flight software of the Space
Shuttle. This work is undertaken as part of a project involving staff from several
NASA Centers (Langley, Johnson, and JPL) and Requirements Analysts (RAs)
from the team at Lockheed Martin (formerly IBM) that develops this software.
Running alongside what is generally considered an exemplary (though manual)
process for requirements review, this experiment provides useful data on the
effectiveness of automated formal analyses [2, 18].

One of the CRs focused on improving the display of flight information to
Shuttle pilots guiding the critical initial bank onto the “Heading Alignment
Cylinder” (HAC) during descent. The CR documented key portions of the re-
quired control logic in tabular form, and was readily formalized using PVS tables;
a small representative example is reproduced in Appendix A. Attempts to dis-
charge the TCCs generated by these tables immediately indicated the need to
document implicit “domain knowledge,” including constraints such as “Major
Mode = 305 or 603 implies iphase ≤ 3,” and “wowlon can be true only if Major
Mode = 305 or 603.” Such domain knowledge was incorporated into the speci-
fication using dependent predicate subtyping and was gradually extended and
refined through an iterative process that relied on the automated strategies for
proving TCCs that are built in to PVS.

Observe that proofs of the HAC TCCs could be automated because neces-
sary domain knowledge was supplied through the type system, using predicate
and dependent subtyping. For example, the constraints mentioned above were
specified as follows (iphase and wowlon are record fields; notice that the latter
has a type that is a subtype of bool!).

iphase: {p: iphase | (mode = mm602 => p >= 4) AND

((mode = mm305 OR mode = mm603) => p <= 3)}
wowlon: {b: bool | b => (mode = mm305 OR mode = mm603)}

The PVS prover can make very effective and automated use of information sup-
plied in this way; a system lacking such a rich type system would probably require
an interactive proof to provide the domain knowledge in the form of axioms. (Of
course, PVS’s decision procedures for linear arithmetic also contributed to the
automation of these proofs.)

After incorporating all constraints identified by the RAs, it was found that
the conditions for several rows in one table still overlapped, and this led to
identification of a missing conjunct in some of the conditions. In addition to

7

discovery of this error, the requirements analysts felt that explicit identification
and documentation of the domain knowledge was a valuable product of the
analysis [18].

Another application for PVS tables has been in verification of fast hardware
division algorithms. The notorious Pentium FDIV bug, which is reported to have
cost Intel $475 million, was due to bad entries in the quotient lookup table for
an SRT divider. Triangular-shaped regions at top and bottom of these tables are
never referenced by the algorithm; the Pentium error was that certain entries
believed to be in this inaccessible region, and containing arbitrary data, were,
in fact, sometimes referenced during execution [16].

An SRT division algorithm similar to that used in the Pentium has been spec-
ified and verified in PVS [19]. The quotient lookup table for this algorithm was
specified as a PVS table (reproduced in Appendix B) which uses blank entries
to indicate those regions of the table that are believed to be inaccessible. PVS
generates 23 coverage TCCs to ensure that these entries will never be encoun-
tered; verification of the algorithm (which can be done largely automatically in
PVS) then ensures that all the nonblank table entries are correct. Injection of
an error similar to that in the Pentium leads to a failed TCC proof whose final
sequent is a counterexample that highlights the error [19]. Miner and Leathrum
have used this capability of PVS to develop several new SRT tables [11], each in
less than three hours.

3 Decision Tables

Decision tables associate Boolean expressions with the “decision” or output to
be generated when a particular expression is true. There are many kinds of
decision tables; the ones considered here are from a requirements engineering
methodology developed for avionics systems by Lance Sherry of Honeywell [22],
and given mechanized support in TableWise, developed by Hoover and Chen at
ORA [8]. The following is a simple decision table (taken from [8, Table 2]).

Operational Procedure
Input Variables Takeoff Climb Climb Int level Cruise

Flightphase climb climb climb climb climb cruise

AC Alt > 400 true true * * * *

compare(AC Alt, Acc Alt) LT LT GE GE * GT

Alt Capt Hold false true false true true true
compare(Alt Target,

prev Alt Target)
* GT * GT * EQ

This table describes the conditions under which each of the four “opera-
tional procedures” Takeoff, Climb, Climb Int Level, and Cruise should be
selected. Each of the columns beneath the name of an operational procedure
gives a conjunction of conditions under which that procedure should be selected

8

(where * indicates “don’t care”). For example, the third and fourth columns in
the body of the table indicate that the operational procedure Climb should be
used if the Flightphase is climb, AC Alt is greater than or equal to Acc Alt,
and either Alt Capt Hold is false, or it is true and Alt Target is greater than
prev Alt Target. The columns forming a subtable beneath each operational
procedure are similar to the AND/OR tables used in the RSML notation of
Leveson and colleagues [10].

The PVS TABLE construct cannot represent this type of decision table di-
rectly: we need some additional mechanism to represent a conjunction such as

(Flightphase = climb) ∧ (AC Alt ≥ Acc Alt) ∧ ¬Alt Capt Hold

by the compact list given in the third column of the table.

Now the list (climb, *, GE, false, *) from that column can be inter-
preted as the argument list to a function X that treats the first element as a
function to be applied to Flightphase, the second as a function to be applied
to the expression AC Alt > 400 and so on, as follows.

X(a,b,c,d,e): bool =

a(Flightphase) & b(AC_Alt > 400) & c(AC_Alt,Acc_Alt)

& d(Alt_Capt_Hold) & e(Alt_Target,prev_Alt_Target)

We can then use this construction to specify the third column of the decision
table as the following row from a vertical one-dimensional PVS table; the com-
plete table is shown in Appendix C (taken from [12], where full details may be
found).

%----------|-------|-------|-------|-------|-----------------%
| X(climb? , * , GE , false , *)| Climb ||
%----------|-------|-------|-------|-------|-----------------%

The functions appearing in the argument list to X are defined as follows (note
that * is overloaded and that climb? is a recognizer for an enumerated type).

q: VAR bool x, y: VAR nat

false(q): bool = NOT q GE(x, y): bool = x >= y

*(q): bool = TRUE *(x, y): bool = TRUE

The disjointness TCC from this table immediately identifies two overlapping
cases, while the coverage TCC identifies four that are missing. For example, one
of the four unproved sequents3 from the coverage TCC is the following.

3 PVS uses a sequent calculus presentation whose interpretation is that the conjunc-
tion of formulas above the turnstile line (|------) should imply the disjunction of
formulas below the line. The appearance of a formula on one side of the line is
equivalent to its negation on the other, and this structural rule is used to eliminate
top-level negations. Names with embedded ! characters are Skolem constants derived
from variables with the same root name.

9

6decision_table_TCC2.1 :

|-------

[1] AC_Alt!1 > 400

[2] Alt_Capt_Hold!1

[3] AC_Alt!1 >= Acc_Alt!1

Unproven sequents such as this, with no formulas above the line, indicate the
failure to select an operational procedure when all the formulas below the line
are false. This one, for example, identifies the failure to consider the case when
AC Alt is not greater than 400, Alt Capt Hold is false, and AC Alt is less than
Acc Alt. The six flaws identified in this way are identical to those found in this
example by the special-purpose tool TableWise [8].

Unlike PVS, TableWise presents the anomalies that it discovers in a tabular
form similar to that of the original decision table; TableWise can also generate
executable Ada code and English language documentation from decision tables.
These benefits are representative of those that can be achieved with a special-
purpose tool. On the other hand, PVS’s more powerful deductive capabilities also
provide benefits. For example, PVS can settle disjointness and coverage TCCs
that depend on properties more general than the simple Boolean and arithmetic
relations built in to TableWise and similar tools. The limitations of these tools
are illustrated by Heimdahl [3], who describes spurious error reports when a
completeness and consistency checking tool for the AND/OR tables of RSML
(developed with Leveson [5]) was applied to TCAS II. These spurious reports
were due to the presence of arithmetic and defined functions whose properties
are beyond the reach of the BDD-based tautology checker incorporated in the
tool. As Heimdahl notes [3, page 81], a theorem prover is needed to settle such
properties; he and Czerny are now experimenting with PVS for this purpose [4].

A theorem prover such as PVS can also examine questions beyond simple
completeness and consistency. For example, the incompleteness and inconsis-
tencies detected in the example decision table can be remedied by adding an
ELSE clause and by replacing the second and third “don’t care” entries under
Climb Int level by false and LT, respectively. The TCC generated by this
modified specification is proved automatically by PVS, so we may proceed to
examine general properties of the decision table. To check that the specifica-
tion matches our intent, we can use conjectures that we believe to be true as
“challenges.” For example, we may believe that when AC Alt = Acc Alt, the
operational procedure selected should match the Flightphase. We can check
this in the case that the Flightphase is cruise using the following challenge.

test: THEOREM AC_Alt = Acc_Alt =>

decision_table(cruise, AC_Alt, Acc_Alt,

Alt_Target, prev_Alt_Target, Alt_Capt_Hold) = Cruise

This is easily proved by PVS’s standard (grind) strategy. However, when we
try the corresponding challenge for the case where Flightphase is climb, we

10

discover that the conjecture is not proved, and actually is false in the case where
Alt Capt Hold is true and Alt Target <= prev Alt Target, thereby exposing
a flaw in either our expectations or our formalization of the specification. Me-
chanically supported challenges of this kind illustrate the utility of undertak-
ing the analysis of tabular specifications in a context that provides theorem
proving. Special-purpose tools for tabular specifications generally provide only
completeness and consistency checking, and perhaps some form of simulation.
Such tools would help identify the anomaly just described only if we happened
to choose to simulate a case where Alt Capt Hold is true and Alt Target <=

prev Alt Target.

4 Transition Relations and Model Checking

Decision tables provide a way to specify the selection of operational procedures
to be executed at each step. However, the model of computation that repeatedly
performs these selection and execution steps is understood informally and is
not explicit in the PVS specifications. Consequently, it is not possible to pose
and examine overall system properties—such as whether a certain property is
invariant, or another is reachable—without formalizing more of the underlying
model of computation. Transition relations provide a way to do this, and the
SCR method is a way to present such relations in a tabular manner [7].

The following is a typical SCR “mode transition table” (taken from Atlee
and Gannon [1, Table 2]). This system, a simplified automobile cruise control,
has four modes (off, inactive, cruise, and override) and the table describes
the conditions under which it makes transitions from one mode to another.

Current Conditions Next
Mode Ignited Running Toofast Brake Activate Deactivate Resume Mode

Off @T - - - - - - Inactive

Inactive @F - - - - - - Off
T T - F @T - - Cruise

Cruise @F - - - - - - Off
- @F - - - - - Inactive
- - @T - - - - Inactive
- - - @T - - - Override
- - - - - @T - Override

Override @F - - - - - - Off
- @F - - - - - Inactive
T T - F @T - - Cruise
T T - F - - @T Cruise

An @T entry indicates the case where the condition labeling that column changes
from false to true, while @F indicates the opposite transition; a T entry indicates
the case where the condition labeling that column remains true through the
transition, F indicates the case where it remains false, and a dash indicates

11

“don’t care.” Thus the third row indicates that the system transitions from the
Inactive mode to the Cruise mode if Activate goes true, while Ignited and
Running remain true and Brake remains false.

To model this type of specification in PVS, we specify a condition as a
predicate on inputs to the system, then atT (which represents @T) is a higher
order function that takes a condition and returns a relation on pairs of inputs
(namely, one that is true when the condition is false when applied to the first
and true when applied to the second). The constructions for atF (representing
@F), T, F, and dc (representing “don’t care”) are specified similarly.

scr[input, mode, output: TYPE]: THEORY

BEGIN

condition: TYPE = pred[input]

p,q: VAR input

P: VAR condition

atT(P)(p,q): bool = NOT P(p) & P(q) % @T(P)

atF(P)(p,q): bool = P(p) & NOT P(q) % @F(P)

T(P)(p,q): bool = P(p) & P(q)

F(P)(p,q): bool = NOT P(p) & NOT P(q)

dc(P)(p,q): bool = true % don’t care

...

With these constructions, the mode transition table shown earlier can be
represented in PVS as follows (for brevity, we show only the transitions from the
Inactive mode, corresponding to the second and third rows of the table; the
complete table is shown in Appendix D, and full details are given in [12]).

event_constructor: TYPE = [condition -> event]

EC: TYPE = event_constructor

PC(A,B,C,D,E,F,G)(a,b,c,d,e,f,g)(p,q):bool = A(a)(p,q) & B(b)(p,q)

& C(c)(p,q) & D(d)(p,q) & E(e)(p,q) & F(f)(p,q) & G(g)(p,q)

% Note: PC stands for "pairwise conjunction"

original(s: modes, (p, q: monitored_vars)): modes =

LET

x = (ignited, running, toofast, brake, activate, deactivate, resume),

X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))

IN TABLE s

...

|inactive| TABLE %----|----|----|----|----|----|----|-----|----------||
|X(atF , dc , dc , dc , dc , dc , dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(T , T , dc , F ,atT , dc , dc)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | inactive ||

ENDTABLE || %----|-----------------------------------|----------||

...

12

Typechecking this specification generates several TCCs; those for the tran-
sitions from mode inactive are proved automatically, but those from modes
cruise and override are not. These unproved TCCs yield subgoals that pin-
point problems in the specification, rather in the way that 6 identified problems
in the decision table. For example, the successor to cruise mode is ambiguous in
the case where toofast and deactivate both go from false to true: the first of
these causes a transition to inactive mode, while the second causes a transition
to override mode. Repairing these flaws requires several changes to the table
and—as with the Space Shuttle example—adding some “domain knowledge”
(such as that toofast implies running).

Because a mode transition table specifies how the system proceeds from one
mode to another, we can examine properties of the computations that this in-
duces. To do this, we first need to derive the transition relation on states that is
implicit in a mode table. We identify the instantaneous state of the system with
its current mode and the current values of its input variables. We specify this as
a record in PVS; a transition relation is a predicate on pairs of such states.

state: TYPE = [# mode: mode, vars: input #]

transition_relation: TYPE = pred[[state, state]]

Recall that a mode transition table has the following signature.

mode_table: TYPE = [mode, input, input -> mode]

We can therefore define a function trans that takes a mode table and returns
the corresponding state transition relation.

trans(mt: mode_table): transition_relation =

(LAMBDA (s,t: state): mode(t) = mt(mode(s), vars(s), vars(t)))

The branching time temporal logic CTL provides a convenient way to specify
certain properties of the computations induced by a transition relation, and
PVS can automatically verify CTL formulas for transition relations over finite
types by using a decision procedure for Park’s µ-calculus to provide CTL model
checking [17]. An example of a property about this specification that can be
specified in CTL is the following invariant.

In cruise mode, the engine is running, the vehicle is not going toofast,
the brake is not on, and deactivate is not selected.

We can examine this property with PVS in the following manner.

13

IMPORTING MU@ctlops, cruise_tab

p,q,r: var state

trans: transition_relation = trans(deterministic)

init(p): bool = off?(p) & NOT ignited(p)

safe4: THEOREM init(p) => AG(trans,(LAMBDA q:

cruise?(q)

=> running(q) & NOT (toofast(q) OR brake(q) OR deactivate?(q))))(p)

safe5: THEOREM init(p)

=> AG(trans, (LAMBDA q: override?(q) => running(q)))(p)

Here, cruise tab is the PVS theory that defines the mode table deterministic
(formed by correcting the errors found in the table original discussed above),
and ctlops is the PVS theory (from the library MU) that defines the CTL
operators. The function trans introduced above is applied to the mode table
deterministic to construct a transition relation (also called trans). We char-
acterize the initial state as one whose mode is off and in which the engine is not
ignited, and specify (as safe4) the invariant mentioned above (AG is the CTL
operator meaning “in every reachable state”). Another plausible invariant prop-
erty is specified by the formula safe5. The PVS model-check command verifies
formula safe5 but fails on safe4. This prompts closer examination of the spec-
ification and reveals that, although cruise mode is exited when toofast goes
true, the transitions into cruise mode neglect to check that toofast is false be-
fore making the transition. The correction is to add the condition F(toofast)

to the three transitions into cruise mode, and PVS is able to verify the formula
safe4 for the corrected specification.

Similar to the TableWise tool for decision tables, Heitmeyer and colleagues
have developed the SCR* tool for checking consistency of SCR tabular speci-
fications [6], while Atlee and colleagues have developed a translator that turns
SCR tables into a form acceptable to the SMV model checker [23]. These special-
purpose tools have the advantage of being closely tailored to their intended uses
and are scalable to larger examples than is convenient for the PVS treatment.
On the other hand, the PVS treatment required no customized development: it
simply builds on capabilities such as tables, higher-order logic, theorem proving,
and model checking that are already present in PVS.

Furthermore, the PVS treatment can draw on the full resources of the lan-
guage and system to combine methods in novel ways, or to conduct customized
analyses. For example, we have used a variant of PVS’s treatment of SCR ta-
bles to specify the nondeterministic mode transitions of interacting “climb” and
“level” components in the requirements for a simple “autopilot” [12, section
4.3]. The transitions of the components were specified as separate tables and
combined by disjunction (representing interleaving concurrency). The combined
specification was then tested against a number of challenge properties using
model checking. A deterministic “implementation” specification of the autopi-
lot was constructed from two “phases” using relational composition to specify

14

sequential execution. This specification was also tested against the challenge
properties using model checking. Finally, model checking was used to show that
the behaviors induced by the requirements and the implementation specifications
are equivalent (this property can be expressed as a CTL formula).

5 Conclusion

We have described PVS’s capabilities for representing tabular specifications,
illustrated how these interact synergistically with other capabilities such as
typechecker-generated proof obligations, dependent typing, higher-order func-
tions, model checking, and general theorem proving, and described some ap-
plications. We demonstrated how these capabilities of the PVS language and
verification system can be used in combination to provide customized support
for existing methodologies for documenting and analyzing requirements. Because
they use only the standard capabilities of PVS, users can adapt and extend these
customizations to suit their own needs.

The generic support provided for tables and for model checking in PVS
may be compared with the more specialized support provided in tools such as
ORA’s TableWise [8], NRL’s SCR* [6, 7], and Leveson and Heimdahl’s consis-
tency checker for RSML [5]. Dedicated, lightweight tools such as these are likely
to be superior to a heavyweight, generic system such as PVS for their chosen
purposes. Our goal in applying PVS to these problems is not to compete with
specialized tools but to complement them. The generic capabilities of PVS can
be used to prototype some of the capabilities of specialized tools (this was done
in the development of TableWise), and can also be used to supplement their
capabilities when comprehensive theorem proving and model checking power is
needed.

Acknowledgments

Examples undertaken by Ricky Butler, Ben Di Vito, and Paul Miner of NASA
Langley Research Center, Steve Miller of Collins Commercial Avionics and Har-
ald Rueß of Universität Ulm, and suggestions by Connie Heitmeyer of the Naval
Research Laboratory, were instrumental in shaping the PVS table constructs.
Comments by the anonymous referees improved the presentation of this paper.

References

Papers by SRI authors are generally available from http://www.csl.sri.com/fm.html.

1. Joanne M. Atlee and John Gannon. State-based model checking of event-driven
system requirements. In SIGSOFT ’91: Software for Critical Systems, pages 16–
28, New Orleans, LA, December 1991. Published as ACM SIGSOFT Engineering
Notes, Volume 16, Number 5.

15

2. Judith Crow and Ben L. Di Vito. Formalizing space shuttle software requirements:
Four case studies. Submitted for publication, 1997.

3. Mats P. E. Heimdahl. Experiences and lessons from the analysis of TCAS II. In
Steven J. Zeil, editor, International Symposium on Software Testing and Analysis
(ISSTA), pages 79–83, San Diego, CA, January 1996. Association for Computing
Machinery.

4. Mats P. E. Heimdahl and Barbara J. Czerny. Using PVS to analyze hierarchi-
cal state-based requirements for completeness and consistency. In IEEE High-
Assurance Systems Engineering Workshop (HASE ’96), pages 252–262, Niagara
on the Lake, Canada, October 1996.

5. Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and consistency anal-
ysis of state-based requirements. In 17th International Conference on Software
Engineering, pages 3–14, Seattle, WA, April 1995. IEEE Computer Society.

6. Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw. SCR*: A
toolset for specifying and analyzing requirements. In COMPASS [9], pages 109–
122.

7. Constance Heitmeyer, Bruce Labaw, and Daniel Kiskis. Consistency checking of
SCR-style requirements specifications. In International Symposium on Require-
ments Engineering, York, England, March 1995. IEEE Computer Society.

8. D. N. Hoover and Zewei Chen. Tablewise, a decision table tool. In COMPASS [9],
pages 97–108.

9. COMPASS ’95 (Proceedings of the Tenth Annual Conference on Computer Assur-
ance), Gaithersburg, MD, June 1995. IEEE Washington Section.

10. Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon
Reese. Requirements specification for process-control systems. IEEE Transactions
on Software Engineering, 20(9):684–707, September 1994.

11. Paul S. Miner and James F. Leathrum, Jr. Verification of IEEE compliant sub-
tractive division algorithms. In Mandayam Srivas and Albert Camilleri, editors,
Formal Methods in Computer-Aided Design (FMCAD ’96), volume 1166 of Lec-
ture Notes in Computer Science, pages 64–78, Palo Alto, CA, November 1996.
Springer-Verlag.

12. Sam Owre, John Rushby, and Natarajan Shankar. Analyzing tabular and state-
transition specifications in PVS. Technical Report SRI-CSL-95-12, Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA, July 1995. Available, with
specification files, at http://www.csl.sri.com/csl-95-12.html.

13. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107–125, February 1995.

14. Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical
Report SRI-CSL-97-2, Computer Science Laboratory, SRI International, Menlo
Park, CA, August 1997.

15. David Lorge Parnas. Tabular representation of relations. Technical Report CRL
Report 260, Telecommunications Research Institute of Ontario (TRIO), Faculty of
Engineering, McMaster University, Hamilton, Ontario, Canada, October 1992.

16. Vaughan Pratt. Anatomy of the Pentium bug. In TAPSOFT ’95: Theory and
Practice of Software Development, volume 915 of Lecture Notes in Computer Sci-
ence, pages 97–107, Aarhus, Denmark, May 1995. Springer-Verlag.

17. S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking with
automated proof checking. In Pierre Wolper, editor, Computer-Aided Verification,

16

CAV ’95, volume 939 of Lecture Notes in Computer Science, pages 84–97, Liege,
Belgium, June 1995. Springer-Verlag.

18. Larry W. Roberts and Mike Beims. Using formal methods to assist in the require-
ments analysis of the Space Shuttle HAC Change Request (CR 90960E). Technical
Report JSC-27599, NASA Johnson Space Center, Houston, TX, September 1996.

19. H. Rueß, N. Shankar, and M. K. Srivas. Modular verification of SRT division.
In Rajeev Alur and Thomas A. Henzinger, editors, Computer-Aided Verification,
CAV ’96, volume 1102 of Lecture Notes in Computer Science, pages 123–134, New
Brunswick, NJ, July/August 1996. Springer-Verlag.

20. John Rushby. Mechanizing formal methods: Opportunities and challenges. In
Jonathan P. Bowen and Michael G. Hinchey, editors, ZUM ’95: The Z Formal
Specification Notation; 9th International Conference of Z Users, volume 967 of
Lecture Notes in Computer Science, pages 105–113, Limerick, Ireland, September
1995. Springer-Verlag.

21. Natarajan Shankar. Unifying verification paradigms. In Bengt Jonsson and
Joachim Parrow, editors, Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, volume 1135 of Lecture Notes in Computer Science, pages 22–39, Uppsala,
Sweden, September 1996. Springer-Verlag.

22. Lance Sherry. A structured approach to requirements specification for software-
based systems using operational procedures. In 13th AIAA/IEEE Digital Avionics
Systems Conference, pages 64–69, Phoenix, AZ, October 1994.

23. Tirumale Sreemani and Joanne M. Atlee. Feasibility of model checking software
requirements. In COMPASS ’96 (Proceedings of the Eleventh Annual Conference
on Computer Assurance), pages 77–88, Gaithersburg, MD, June 1996. IEEE Wash-
ington Section.

The views and conclusions contained herein are those of the authors and should not be in-

terpreted as necessarily representing the official policies or endorsements, either expressed or

implied, of the Air Force Office of Scientific Research or the U.S. Government.

17

Appendix

A HAC Requirements Table Expressed in PVS

switch_position: TYPE = {low, medium, high}
major_mode: TYPE = {mm301, mm302, mm303, mm304, mm305, mm602, mm603}
iphase: TYPE = {n: nat | n <= 6} CONTAINING 0

ADI_error_inputs: TYPE =

[# mode: major_mode,

switch_position: switch_position,

iphase: {p: iphase | (mode = mm602 => p >= 4) AND

((mode = mm305 OR mode = mm603) => p <= 3)},
wowlon: {b: bool | b => (mode = mm305 OR mode = mm603)} #]

ADI_error_scale_deflection(A: ADI_error_inputs) : [real, real, real] =

LET mode = mode(A), switch_position = switch_position(A),

iphase = iphase(A), wowlon = wowlon(A) IN

TABLE % Result is of form: [roll error, pitch error, yaw error]

, switch_position

%---%

|[high | medium | low]|

%--%

| mode = mm301 OR

mode = mm302 OR

mode = mm303 | (10, 10, 10) | (5, 5, 5) | (1, 1, 1) ||

%--%

| mode = mm304 OR

(mode = mm602 AND

(iphase = 4 OR

iphase = 6)) | (25, 5, 5/2) | (25, 2, 5/2) | (10, 1, 5/2) ||

%--%

| mode = mm602 AND

iphase = 5 | (25, 5/4, 5/2) | (25, 5/4, 5/2) | (10, 1/2, 5/2) ||

%--%

| (mode = mm305 OR

mode = mm603) AND

NOT wowlon | (25, 5/4, 5/2) | (25, 5/4, 5/2) | (10, 1/2, 5/2) ||

%--%

| wowlon | (20, 10, 5/2) | (5, 5, 5/2) | (1, 1, 5/2) ||

%--%

ENDTABLE

18

B Quotient Lookup Table for SRT Divider

q(D: bvec[3], (P: bvec[7] | estimation_bound?(valD(D), valP(P)))):

subrange(-2, 2) =

LET a = -(2 - P(1) * P(0)),

b = -(2 - P(1)),

c = 1 + P(1),

d = -(1 - P(1)),

e = P(1),

Dp:nat = bv2pattern(D),

Ptruncp:nat = bv2pattern(P^(6,2))

IN TABLE Ptruncp, Dp

|[000| 001| 010| 011| 100| 101| 110| 111]|

%--%

|01010| | | | | | | | 2 ||

|01001| | | | | | 2 | 2 | 2 ||

|01000| | | | | 2 | 2 | 2 | 2 ||

|00111| | | 2 | 2 | 2 | 2 | 2 | 2 ||

|00110| | 2 | 2 | 2 | 2 | 2 | 2 | 2 ||

|00101| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 ||

|00100| 2 | 2 | 2 | 2 | c | 1 | 1 | 1 ||

|00011| 2 | c | 1 | 1 | 1 | 1 | 1 | 1 ||

|00010| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 ||

|00001| 1 | 1 | 1 | 1 | e | 0 | 0 | 0 ||

|00000| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ||

|11111| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ||

|11110| -1 | -1 | d | d | 0 | 0 | 0 | 0 ||

|11101| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 ||

|11100| a | b | -1 | -1 | -1 | -1 | -1 | -1 ||

|11011| -2 | -2 | -2 | b | -1 | -1 | -1 | -1 ||

|11010| -2 | -2 | -2 | -2 | -2 | -2 | b | -1 ||

|11001| -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 ||

|11000| | | -2 | -2 | -2 | -2 | -2 | -2 ||

|10111| | | | -2 | -2 | -2 | -2 | -2 ||

|10110| | | | | | -2 | -2 | -2 ||

|10101| | | | | | | -2 | -2 ||

%--%

ENDTABLE

19

C Example Decision Table

q:VAR bool

true(q): bool = q

false(q): bool = NOT q

*(q): bool = TRUE

x,y:VAR nat

GT(x, y): bool = x > y LT(x, y): bool = x < y

GE(x, y): bool = x >= y LE(x, y): bool = x <= y ;

EQ(x, y): bool = x = y *(x, y): bool = TRUE

operational_procedures: TYPE = {Takeoff, Climb, Climb_Int_Level, Cruise}

flight_phases: TYPE = {climb, cruise}

Flightphase: VAR flight_phases

AC_Alt, Acc_Alt, Alt_Target, prev_Alt_Target: VAR nat

Alt_Capt_Hold: VAR bool

decision_table(Flightphase, AC_Alt, Acc_Alt, Alt_Target,

Prev_Alt_Target, Alt_Capt_Hold): operational_procedures =

LET X = (LAMBDA (a: pred[flight_phases]), (b: pred[bool]),

(c: pred[[nat,nat]]), (d: pred[bool]), (e: pred[[nat,nat]]):

a(Flightphase) &

b(AC_Alt > 400) &

c(AC_Alt,Acc_Alt) &

d(Alt_Capt_Hold) &

e(Alt_Target,prev_Alt_Target)) IN TABLE

% | | | | |

% | | | | |

% v v v v v Operational Procedure

%----------|-------|-------|-------|-------|------------- ----%

| X(climb? , true , LT , false , *) | Takeoff ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , true , LT , true , GT) | Takeoff ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , * , GE , false , *) | Climb ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , * , GE , true , GT) | Climb ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , * , * , true , *) | Climb_Int_Level ||

%----------|-------|-------|-------|-------|------------------%

| X(cruise?, * , GT , true , EQ) | Cruise ||

%----------|-------|-------|-------|-------|------------------%

ENDTABLE

20

D Example SCR Table

event_constructor: TYPE = [condition -> event]

EC: TYPE = event_constructor

PC(A,B,C,D,E,F,G)(a,b,c,d,e,f,g)(p,q):bool = A(a)(p,q) & B(b)(p,q)

& C(c)(p,q) & D(d)(p,q) & E(e)(p,q) & F(f)(p,q) & G(g)(p,q)

% Note: PC stands for "pairwise conjunction"

original(s: modes, (p, q: monitored_vars)): modes =

LET

x: conds7 = (ignited, running, toofast, brake, activate, deactivate, resume),

X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))

IN TABLE s

|off| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atT , dc , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | off ||
%----|-----------------------------------|----------||

ENDTABLE ||

|inactive| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF , dc , dc , dc , dc , dc , dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(T , T , dc , F ,atT , dc , dc)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | inactive ||
%----|-----------------------------------|----------||

ENDTABLE ||

|cruise| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF, dc, dc, dc, dc, dc, dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc ,atF , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , dc ,atT , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , dc , dc ,atT , dc , dc , dc)| override ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , dc , dc , dc , dc ,atT , dc)| override ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | cruise ||
%----|-----------------------------------|----------||

ENDTABLE ||

|override| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF , dc dc , dc , dc , dc , dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc ,atF , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(T , T , dc , F ,atT , dc , dc)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
|X(T , T , dc , F , dc , dc ,atT)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | override ||
% ---|-----------------------------------|----------||

ENDTABLE ||

ENDTABLE

This article was processed using the LATEX macro package with LLNCS style

21

