
CSL Technical Report SRI-CSL-02-04 • 22nd October 2004

A Semantic Embedding of the Ag Dynamic Logic in PVS

Carlos López Pombo1

Sam Owre2

Natarajan Shankar3

The work of the first author was supported by the School of Sciences, University of Buenos
Aires through FOMEC project 359, and SRI International. The other authors were supported
by NASA contract number NAS1-0079 and NSF contract number CCR-0082560.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Acknowledgements

Carlos Lopez Pombo:

First of all I want to thank Natarajan Shankar for making my stay at the Formal Methods
group of the SRI Computer Science Laboratory possible. Sam Owre, Natarajan Shankar
and Marcelo Fŕıas were the people responsible for making my time at SRI fruitful by giving
me guidance and support.

Thanks to Josh Levy for providing me the vital element, yerba mate, without it I would
never found a way to survive four months. And thanks to Sam for sharing with me those
mates. For those who believe in traditions it is very important to find somebody willing to
share them.

Finally I want to thank all CSL staff, but specially to John Rushby and Hassen Säıdi
for their hospitality and support during my stay.

The list of the people from Argentina that never let me down and worked to make my
travel possible is so large that I could never fit it in this page, thanks to all of you.

Abstract

Ag is a specification language presented as a syntactic sugaring of the First-Order Dy-
namic Logic of Fork Algebras. This language is particularly attractive due to its expressive
power, easy-to-understand semantics, and the existence of a complete deductive system. We
will briefly present the language together with a complete deductive calculus and some theo-
retical results about its expressive power. We then show how the higher-order logic theorem
prover PVS can be used to build a semantic framework for reasoning about specifications
written in Ag by encoding the semantics within this powerful general-purpose tool.

We then illustrate how this semantic embedding can be used by means of a case study
of a cache system specification.

Contents

1 Introduction 1

2 The Ag Specification Language 3
2.1 Syntactic and Semantic Foundations of Ag: Fork Algebras 3
2.2 Ag: First-Order Dynamic Logic of Fork Algebras 7

3 The PVS Specification and Verification System 13

4 Encoding Ag Semantics in PVS 15
4.1 Encoding of FODLwA semantics . 15
4.2 Encoding of the Point-Dense Simple Proper Fork Algebras 18
4.3 Encoding of Ag . 21

5 Case Study: A Cache System 24

6 Conclusions 28

A Displaying Semantically Embedded Logics 30

B Structure of the Framework 32

i

List of Figures

2.1 Definition of “∇ ” (fork) applied to relations R and S. 5

4.1 Definition of FODLwA language within PVS. 16
4.2 Theory that encodes the semantics of FODLwA. 17
4.3 Meaning function for terms. 18
4.4 Meaning function for the existential quantifier. 18
4.5 Meaning function for the iteration program. 19
4.6 Definition of fork calculus language within PVS. 20
4.7 Structured universe within PVS. 20
4.8 Theory that models the structured universe within PVS. 21
4.9 Construction of the carrier of the calculus. 22
4.10 Usage of the structured universe to give semantics to the fork calculus con-

stants, predicates and functions. 23

5.1 Specification of the domains of the cache system. 25
5.2 Specification of the atomic actions of the cache system. 26
5.3 Specification of the properties of the cache system. 26
5.4 Proof of the consistency criteria for the cache system. 27

B.1 Structure of the framework. 32

ii

Chapter 1

Introduction

Due to the increasing complexity of software systems, the application of formal methods
to prove the correctness of specifications and designs is becoming more useful in avoiding
system failures. One of the main disadvantages of formal methods is that the applica-
tion of the available tools requires significant knowledge and skill in order to get effective
communication between the human and the computer.

There is much ongoing work attempting to make formal methods applicable by people
that do not have a strong formal methods education. An example of this is Alloy [Jac02,
JSS01], a widely used language that allows the level of automation to be tailored in the
process of development and validation of specifications.

This report addresses the problem of mechanizing the verification of specifications writ-
ten in Ag [FPB02, FBP01]. This specification language is a relational framework that is
intended to be the kernel of a tool suitable for specification and verification of industrial
applications.

The language Ag is the First-Order Dynamic Logic of Fork Algebra terms. It has a quite
simple syntax based on First-Order Dynamic Logic, and an easy-to-understand semantics at
the term level based on binary relations. Results on the interpretability of several logics into
the equational calculus of Fork Algebras illustrate the expressive power of this language.
This expressiveness is extremely useful for the specification of different views of a system,
each with a different logic as needed. We believe that these features make it a good choice
in the specification and design stages of a software project development.

We use the classical Higher-Order Logic of PVS as a means of embedding Ag seman-
tics with the aim of using its capabilities to construct specifications and develop readable
proofs of the properties involved. In Chapter 3 we present the highlights of this powerful
theorem prover that has been successfully applied to industrial problems in many areas,
including microcode verification [MS95], fault-tolerance algorithms [Min00], and Java code
verification [vdBJ01].

Fork Algebras were introduced by Haeberer and Veloso [HV91] when looking for a frame-
work for system specification, construction, and verification. The calculus allows binary
relations to be built from the predetermined constants “ 0 ”, “ 1 ” and “ 1′ ”, plus operations
such as sum “ +”, product “ · ”, complement “ ”, converse “ ˘”, composition “ ; ”, and fork
“∇ ”, (to be defined later). The calculus of fork algebras has been used as an intermediate

1

2 Chapter 1. Introduction

framework for interpretation of different logics. Previous work due to Fŕıas, Maibaum, Or-
lowska, et al., showed that several logics such as classical first-order logic [VHF95, FBH97],
a wide class of modal logics [FO98], and propositional [FO98] and first-order dynamic logic
[FBM01], could be interpreted within fork algebras.

Dynamic Logic is the name given to a family of logic systems originally meant to formalize
concepts such as correctness of specifications and programs[Pra76]. As mentioned by Harel
et al., in [HKT00], other activities fall into the category of problems addressed by this
framework, such as synthesizing programs from specifications or determining the equivalence
of programs.

First-Order Dynamic Logic is a framework composed of three ingredients, first-order
predicate logic, modal logic, and the algebra of regular events. The result is a system with
practical and theoretical interest because of the problems it can address.

In Dynamic Logic, programs are syntactic objects that are meant to change the values of
variables and consequently the truth value of the formulas. For example, the program “x :=
x+1”, changes the value of the formula “x is even”. In traditional Dynamic Logic, programs
are constructed from assignments “x := t”, composition “;”, choice “+” and iteration “∗”.
Formulas are constructed, as in traditional first-order predicate logic, from predicate symbols
applied to terms, negation “¬”, disjunction “∨” and existential quantification “∃”. The
relation between programs and formulas is established by using the mixed operators test
“?”, that takes a formula and yields a program and the possibility operator “〈〉”, that takes
a program and a formula and yields a formula.

This report is organized as follows. In Chapter 2, we present the syntax, semantics, and
complete deductive calculus for Ag, together with a description of the expressive power of
the language. In Chapter 3, we present the PVS system, particularly those features that
are helpful in the implementation of a proof checker for this language.

In Chapter 4, we show how PVS [OSRSC01c, OSRSC01b, OSRSC01a] can be used
as a semantic framework for reasoning about specifications written in Ag by encoding its
semantics within this powerful general-purpose tool.

In Chapter 5, we develop an example of a cache system [FBP01], giving the complete
specification of this system and its desired behavior illustrating how this framework can be
used to build and verify such specifications.

We finish this work by presenting our conclusions in Chapter 6.
There are two appendices. Appendix A discusses some esthetical characteristics of pre-

senting Ag proofs within the PVS proof checker. Appendix B shows a graph that models
the import chain of files that constitute the framework in which an Ag specification can be
verified using PVS.

Chapter 2

The Ag Specification Language

As mentioned earlier, Ag has its origins in the equational calculus of fork algebras, which
is presented in the first section below. We will complete the definition of the language
in Section 2.2 by presenting the first-order dynamic logic of fork algebras, and show some
interesting results.

2.1 Syntactic and Semantic Foundations of Ag: Fork
Algebras

The calculus of fork algebras (also called fork calculus), is an equational calculus. In order
to give a full description of the calculus, it suffices to provide the language, axioms and
inference rules. Formulas are identities between terms. Terms are built from variables, the
constants “ 0 ”, “ 1 ” and “ 1′ ”, the unary operations “ ” (complement) and “ ˘” (converse),
and the binary operations “+ ” (sum), “ · ” (product), “ ; ” (composition) and “∇ ” (fork).
The inference rules are those of equational logic [BS81]. The axioms are those of the Boolean
calculus, 〈 0, 1, ,+, · 〉, plus some identities that specify the behavior of “ ˘”, “ ; ” and “∇ ”.

Definition 2.1 Syntax of the fork calculus.

- 0, 1 and 1′ are Terms,

- If t is a Term, then t and t̆ are Terms,

- If t and t′ are Terms, then t+ t′, t · t′, t ; t′ and t∇t′ are Terms, and

- If t and t′ are Terms, then t = t′ is a Formula.

Definition 2.2 Deductive system for the fork calculus. The deductive system for the fork
calculus consists of the inference rules of the equational calculus. the Boolean algebra axioms
for 〈 0, 1, ,+, · 〉, and the following identities:

- x ; (y ; z) = (x ; y) ; z (associativity of “ ;”),

3

4 Chapter 2. The Ag Specification Language

- (x+ y) ; z = x ; z + y ; z (distributivity of “ ;” over “ +”),

- (x+ y)̆ = x̆ + y˘ (distributivity of “ ”̆ over “ +”),

- (x̆)̆ = x (involution of “ ”̆),

- x ; 1′ = x (“ 1′” is neutral for “ ;”),

- (x ; y)̆ = y˘; x̆ (distributivity of “ ”̆ over “ ;”),

- (x ; y) · z = 0 iff (z ; y)̆ · x = 0 iff (x̆ ; z) · y = 0,

- x∇y = (x ; (1′∇1)) · (y ; (1∇1′))

- (w∇x) ; ((y∇z)̆) = (w ; y)̆ · (x ; z)̆

- (((1′∇1)̆)∇((1∇1′)̆)) + 1′ = 1′

Then we add, to this set of axioms, the following two formulas. The first one requires
the models to be point-dense. Quoting Maddux in [Mad91]:

“A relation algebra is said to be point-dense if every nonzero element below the
identity contains a point.”

A point is a relation r that satisfies ¬(r = 0)∧x ; 1 ;x ≤ 1′. So the new axiom ends up being

(∀x)(¬(x = 0) ∧ x ≤ 1′ ⇒ (∃y)(¬(y = 0) ∧ y ; 1 ; y ≤ 1′ ∧ y ≤ x)) (2.1)

The second axiom is known as the Tarski rule and requires the models to be simple.

(∀x)(¬(x = 0)⇒ 1 ;x ; 1 = 1) (2.2)

This fork calculus gives rise to the class of point-dense simple abstract fork algebras, pre-
sented next.

Definition 2.3 A point-dense simple abstract fork algebra is an algebraic structure 〈R, +,
·, , 0, 1, ; , 1′, ,̆ ∇〉 where R is a set, “+ ”, “ · ”, “ ; ”, “∇ ” are binary operations over
R; “ ”, “ ˘” are unary operations over R; “0”, “1”, “1′” are distinguished elements of R,
and this is a model of the identities presented in Definition 2.2, and the Formulas 2.1 and
2.2.

Proper fork algebras are those in which the universe is made of binary relations on a
set A closed under a binary function ?. The class of proper fork algebras to be used in this
report requires only that ? is injective and was introduced by Frias et al. in [FBHV95].

In a proper fork algebra “0” is the empty relation, “1” is the universal relation, “+ ”, “ · ”,
and “ ; ” are the sum, product, and composition of binary relations, “ ˘” is transposition,
“ ” is the complement relation, “1′” is the identity relation, and “∇ ” is defined as follows:

R∇S = { 〈x, ?(y, z)〉 : x R y ∧ x S z } .
Figure 2.1 shows the definition of “∇ ” (fork) applied to relations R and S.
Now we will define proper fork algebras formally. To do this, we introduce the class of

star proper fork algebras.

2.1. Syntactic and Semantic Foundations of Ag: Fork Algebras 5

x
���

���:

XXX
XXXz

y

z

?∇
R

S

Figure 2.1: Definition of “∇ ” (fork) applied to relations R and S.

Definition 2.4 A star proper fork algebra is a two sorted structure 〈R, U, +, 0, ·, E, , ; ,
,̆ 1′, ∇, ?〉, where “0”, “E” and “1′” are constants, “ ” and “˘” are unary operators, and

“+”, “·”, “ ;” and “∇” are binary operators satisfying the following conditions:

- 〈R,+, 0, ·, E, , ; , ,̆ 1′〉 is an algebra of binary relations on U ,

- ? : U2 → U is an injective function when its domain is restricted to E,

- R is closed by the operation ∇, defined as follows:

S∇T = {〈x, y ? x〉|x S y ∧ x T z}.

The class star proper fork algebras is denoted as ?PFA.

Definition 2.5 The class of proper fork algebras is the class obtained by taking reducts to
the similarity type 〈R,+, 0, ·, E, , ; , ,̆ 1′,∇〉 of the algebras in the class ?PFA.

The class containing those proper fork algebras that satisfy axioms 2.1 and 2.2 will be
called point-dense simple proper fork algebras.

Notice that the main reason for the use of fork, besides its practical use in the definition
of disjoint union, first projection, and second projection (to be shown), can be found at the
end of Tarski’s paper [Tar41], where he not only developed the elementary theory of binary
relations, he also presented the relation algebras as the restriction of this theory to those
formulas where no individual variables appear. He also posed some questions involving the
representability of relation algebras. These were later answered negatively by Roger Lyndon
in [Lyn50, Lyn56] by exhibiting a non-representable relation algebra (i.e., a relation algebra
that is not isomorphic to any algebra of binary relations). The immediate consequence of
this result is that there exist properties valid in all algebras of binary relations which can be
false in some relation algebras. On the other hand, as we said in a previous paragraph, the
extension of Tarski’s relation algebras with fork, or fork algebras, were proved representable,
[FBHV95]. Actually, point-density also guarantees representability by itself; nevertheless
fork is better suited because it can be axiomatized equationally.

It is clear that every point-dense simple proper fork algebra satisfies the axioms, and
therefore is a point-dense simple abstract fork algebra. The other inclusion follows from
the next representability theorem that can be proved by mimicking the proof presented in
[FBHV95] for the representability of fork algebras, but considering the fact that point-dense
relation algebras are representable, proved in [Mad91].

Theorem 2.1 Given a point-dense simple abstract fork algebra A there exists a point-dense
simple proper fork algebra B isomorphic to A.

6 Chapter 2. The Ag Specification Language

Since this theorem implies that the axiomatization provided for the class of point-dense
simple abstract fork algebras is complete with respect to the formulas valid in the point-
dense simple proper fork algebras, it provides the other inclusion and is the key argument
for proving the completeness of Ag.

An immediate consequence of this theorem is that the equational (and also first-order)
theory of point-dense simple abstract fork algebras and the point-dense proper fork algebras
are the same (of course, with respect to the language of the abstract fork algebras).

From now on we will refer to the point-dense simple abstract (proper) fork algebras
simply as abstract (proper) fork algebras, but keeping in mind the axioms we added to
assure point-density and simplicity of the models.

We now recall some notation that will be used often in this work, specially in Chapter
5 where we present a case study.

We denote by “≤” the ordering relation induced by the Boolean algebra underlying the
fork algebra. Given a relation R, dom(R) denotes the term (R ;R)̆ · 1′. Notice that for any
R, dom(R) is a partial identity, i.e., a relation contained in 1′. Since partial identities define
domains, the complement domain of a partial identity I is denoted by ¬I and defined as
I ·1′. A relation R is called functional if it satisfies the condition R˘;R ≤ 1′, and one-to-one
if it satisfies R ;R˘≤ 1′. Notice that when viewed in a proper fork algebra, dom(R) is indeed
a subset of the identity binary relation. Similarly, functional relations are indeed functions
and one-to-one relations are indeed injective. We also define projection π as the relation
(1′∇1)̆ and projection ρ as (1∇1′)̆ (notice that π acts as the first projection and ρ as the
second one).

Given binary relations R and S, the disjoint union of R and S, denoted by R ⊕ S, is
defined as follows:1

R⊕ S =
π ;C0

∇
ρ ; (R ; inl)

; ρ +
π ;C1

∇
ρ ; (S ; inr)

; ρ

In this context, C0 and C1 are constant relations with only one pair, for instance, the
pair 〈c0, c0〉 in the case of C0 and 〈c1, c1〉 in the case of C1, with c0 and c1 distinguished
elements. The relations inl and inr are the left and right injections of the disjoint union.

The disjoint union can be understood in the following way. First, it tags input and
output elements in R in red, i.e., if 〈x, y〉 ∈ R, then the pair becomes 〈?(red, x), ?(red, y)〉.
Similarly, blue is used for those elements in S. Once domain and range elements are tagged,
R ⊕ S performs the union of the tagged relations R and S. In this case, c0 is red, c1 is
blue, and the relation inl, given an input element, returns the element tagged in red and
inr, the element tagged in blue. Notice that the converses of inl and inr remove tags from
appropriately tagged objects.

Because of the importance of the fork algebras in computer sciences as a research field
itself, we refer the interested reader to [Fŕı02].

1Because of its complexity, this definition is presented in a two dimensional Begriffsschrift-like diagram.

2.2. Ag: First-Order Dynamic Logic of Fork Algebras 7

2.2 Ag: First-Order Dynamic Logic of Fork Algebras

Classical logic is a language suitable for describing properties in a static universe. In fact,
there is a single universe that fixes the meaning of the propositional atoms and consequently
of functions and predicates. Classical logics are not well suited for expressing properties that
can change their truth value in a dynamic way, for example, invariants of programs.

Modal logics introduce the notion of possible worlds, and truth values are fixed but only
within the scope of a world. A consequence of this is that in modal logics the propositional
atoms, functions, and predicates can take different values in different worlds.

The traditional semantics of modal logics are Kripke models [Ham88]. These structures
consist of a set of worlds, and give meaning to propositional atoms, functions, and predicates
relative to a given world, and one or more accessibility relations between worlds. Every
modal logic introduces one or more modal operators. An example of this is given by the
formula “2f”; it is valid in a world “w” if and only if in every world, accessible from “w”,
the formula “f” is valid.

We are interested in a particular modal logic called first-order dynamic logic (FODL).
This modal logic allows the expression of program behavior taking as atomic programs
assignments of the form “x := t”, where x is a variable symbol and t is a term, and the
“SKIP” program. More complex programs can be constructed by the operations “?”, that
take as argument a FODL formula and test for its truth value, “+” and “;”, that take two
programs and perform a non-deterministic choice and a sequential composition, respectively,
and “∗” that takes a program and performs an unbounded, but finite, number of iterations
of it.

In fact, we will use an extension of FODL that makes use of atomic actions and metavari-
ables. To make the distinction with traditional FODL, this extension will be called FODLwA.

Definition 2.6 Syntax of FODLwA.
Given sets of symbols C, M , V , A, P , and F for constants, metavariables, variables,

atomic actions, predicates, and functions (with their arity), we define Terms, Formulas, and
Programs over the signature Σ = 〈C,M, V,A, P, F 〉 as follows.

Terms

- If c ∈ C then c is a Term,

- If m ∈M then m is a Term,

- If v ∈ V then v is a Term,

- If t ∈ F and t1, . . . , tn are Terms then t(t1, . . . , tn) is a Term, where n is the arity of
t,

Formulas

- TRUE is a Formula,

- If p ∈ P and t1, . . . , tj are Terms then p(t1, . . . , tj) is a Formula, where j is the arity
of p,

8 Chapter 2. The Ag Specification Language

- If f is a Formula then ¬f is a Formula,

- If f and g are Formulas then f ⇒ g is a Formula,

- If v ∈ V and f is a Formula then (∃v)f is a Formula,

- If f is a Formula and P is a Program then 〈P 〉f is a Formula,

Programs

- If f is a Formula with no reference to metavariables then f? is a Program,

- SKIP is a Program,

- If a ∈ A and f and g are Formulas then a(f, g) is a Program,

- If v ∈ V and t is a Term with no reference to metavariables then v := t is a Program,

- If Q and Q′ are Programs then

- Q+Q′ is a Program,

- Q;Q′ is a Program, and

- If Q is a Program then Q∗ is a Program.

Now, a formula will be well-formed if and only if no metavariable symbol appears in any
program involved. It is easy to construct a recursive function that checks for this property.

Note that all other formulas and programs can be obtained from the existing ones. It
is important to recall that the dual definition of the “eventually” modal statement, 〈P 〉f ,
gives rise to the “necessarily” modal statement, defined as [P]f = ¬〈P 〉¬f . Note also that
atomic actions are built from two formulas, say for instance a(f, g), where f is the pre-
condition and g the post-condition of the atomic action a. Carroll Morgan’s specification
statement [Mor88] also specifies actions in terms of pre-conditions and post-conditions, but
additionally includes a frame condition stating which variables are allowed to be modified.

Definition 2.7 Consider the FODLwA signature Σ = 〈C,M, V,A, P, F 〉. Let C be a set
that acts as the carrier of the logic, and define a world w to be a function from V to C. The
structure A is 〈AA,mA 〉, where AA is the set of all worlds, η is a function from M to C,
and mA is the meaning function for terms, formulas, and programs, defined as follows.

Meaning Function for Terms

- If c ∈ C, then mA(c) ∈ C,

- If m ∈M , then mA
w,η(m) = η(m),

- If v ∈ V , then mA
w,η(v) = w(v),

- If f ∈ F and t1, . . . , tn are Terms, where n is the arity of f , then
mA

w,η(f(t1, . . . , tn)) = mA(f)(mA
w,η(t1), . . . ,mA

w,η(tn))
where mA(f) is a function in Cn → C

2.2. Ag: First-Order Dynamic Logic of Fork Algebras 9

Meaning Function for Formulas

- mA
η(TRUE) = AA,

- If p ∈ P and t1, . . . , tn are Terms, where n is the arity of p, then
mA

η(p(t1, . . . , tn)) = {w ∈ AA |mA(p)(mA
w,η(t1), . . .mA

w,η(tn))},
where mA(p) is a n-ary relation on C,

- If f is a Formula, then
mA

η(¬f) = {w ∈ AA |w 6∈ mA
η(f)},

- If f and g are Formulas, then
mA

η(f ⇒ g) = {w ∈ AA |w ∈ mA
η(f) implies w ∈ mA

η(g)},

- If v ∈ V and f is a Formula, then
mA

η((∃v)f) = {w ∈ AA | ∃a ∈ C : w|va ∈ mA
η(f)},

- If f is a Formula and P is a Program, then
mA

η(〈P 〉f) = {w ∈ AA | ∃w′ ∈ AA : (w,w′) ∈ mA
η(P) and w′ ∈ mA

η(f)}

Meaning Function for Programs

- If f is a Formula with no reference to metavariables, then
mA

η(f?) = {(w,w′) ∈ AA ×AA |w = w′ and w ∈ mA
η(f)},

- mA
η(SKIP) = {(w,w′) ∈ AA ×AA |w = w′},

- If f and g are Formulas, then
mA

η(a(f, g)) = {(w,w′) ∈ AA ×AA | for all η′ : [M → C]
w ∈ mA

η′
(f) and w′ ∈ mA

η′
(g)},

- If v ∈ V and t is a Term with no reference to metavariables, then
mA

η(v := t) = {(w,w′) ∈ AA ×AA |w′ = w|vt },

- If P and P ′ are Programs, then

- mA
η(P + P ′) = {(w,w′) ∈ AA ×AA |

(w,w′) ∈ mA
η(P) or (w,w′) ∈ mA

η(P ′)},
- mA

η(P ;P ′) = {(w,w′) ∈ AA ×AA | ∃w′′ ∈ AA :
(w,w′′) ∈ mA

η(P) and (w′′, w′) ∈ mA
η(P ′)},

- If P is a Program, then
mA

η(P ∗) = µX : {(w,w′) ∈ AA ×AA |w = w′ or ∃w′′ ∈ AA :
(w,w′′) ∈ mA

η(P) and (w′′, w′) ∈ X}.

Note that in the case of constant, function and predicate symbols, the value of mA is
defined in advance and does not depend on the world or the metavariable assignment, and
in the case of functions and programs the value of mA does not depend on the world.

10 Chapter 2. The Ag Specification Language

Definition 2.8 A formula f is said to be valid for structure A and a given state w, written
A, w |= f , if and only if for all η : [M → C], w ∈ mA

η(f). f is said to be valid for A if and
only if for all worlds w, A, w |= f , written A |= f . f is said simply valid if for all structures
A and worlds w, A, w |= f , written |= f .

Consider now the language of traditional FODL with wildcard assignment [HKT00, chap-
ter 11]. The wildcard assignment is a particular statement that performs the assignment of
an unknown value to a variable, and is defined as 〈x := ∗〉f = (∃x)f . We will show that
FODL and FODLwA are equally expressive.

It is easy to see that every FODL formula can be translated to FODLwA, and as the
semantics have been defined consistently we can state the following theorem:

Theorem 2.2 Given a FODL formula f ,

|=FODL f implies |=FODLwA f

Note that the translation from FODLwA formulas to FODL is quite straightforward,
except that occurrences of metavariables must be removed, and atomic actions must be
expressed in terms of traditional programs.

Definition 2.9 Given sets of symbols C, M , V , A, P , and F for constants, metavariables,
variables, atomic actions, predicates and functions (with their arity); consider the signature
Σ = 〈C,M, V,A, P, F 〉:

Formula Translations

- tr(TRUE) = TRUE,

- If p ∈ P and t1, . . . , tn, with n the arity of p, are Terms, then
tr(p(t1, . . . , tn)) = p(t1, . . . , tn),

- If f is a Formula, then tr(¬f) = ¬tr(f),

- If f and g are Formulas, then tr(f ⇒ g) = tr(f)⇒ tr(g),

- If v ∈ V and f is a Formulas, then tr((∃v)f) = (∃v)tr(f),

- If f is a Formula and P is a Program, then

tr(〈P 〉f) = (∀y0 . . . yk)〈tr(P)〉tr(f),

where yi are the variable symbols introduced to replace the metavariable symbols in
the atomic actions that occur in P .

Program Translations

- If f is a Formula with no reference to metavariables, then tr(f?) = tr(f)?,

- tr(SKIP) = SKIP,

2.2. Ag: First-Order Dynamic Logic of Fork Algebras 11

- If a ∈ A and f and g are Formulas, then
tr(a(f, g)) = (f |mi

ymi
?);xj := ∗; (g|mi

ymi
?), where ymi is a new variable symbol introduced

to replace the metavariable mi, and all xj are the variables mentioned in the original
formula.

- If v ∈ V and t is a Term with no reference to metavariables, then
tr(v := t) = v := t,

- If P and P ′ are Programs, then

- tr(P + P ′) = tr(P) + tr(P ′),

- tr(P ;P ′) = tr(P); tr(P ′), and

- If P is a Program, then tr(P ∗) = tr(P)∗.

Theorem 2.3 Given a FODLwA formula f ,

|=FODLwA f implies |=FODL (∀ymi
)tr(f |mi

ymi
)

where ymi is a new variable symbol introduced to replace the metavariable mi.

Theorem 2.2 is very simple. Theorem 2.3 follows from the fact that every FODLwA
model for f is isomorphic to a FODL model for the translation of f . Contact the authors
for complete proofs of these theorems.

From the last two theorems and [HKT00, theorem 14.7] it follows that S2, one of the
various deductive systems for FODL, is a sound and complete deductive system for FODLwA.
We now present S2.

Definition 2.10 The deductive system S2 is the set of axioms for classical first-order logic,
enriched by the following formulas:

- 〈P 〉f0 ∧ [P]f1 ⇒ 〈P 〉(f0 ∧ f1),

- 〈P 〉(f0 ∨ f1)⇔ 〈P 〉f0 ∨ 〈P 〉f1,

- 〈P0 + P1〉f ⇔ 〈P0〉f ∨ 〈P1〉f,

- 〈P0;P1〉f ⇔ 〈P0〉〈P1〉f,

- 〈f0?〉f1 ⇔ f0 ∧ f1,

- f ∨ 〈P 〉〈P ∗〉f ⇒ 〈P ∗〉f,

- 〈P ∗〉f ⇒ f ∨ 〈P ∗〉(¬f ∧ 〈P 〉f),

- 〈x← t〉f ⇔ f [x/t],

- f ⇔ f̂ ; where f̂ is f in which some occurrence of program P has been replaced by
the program z := x;P ′;x := z, for z not appearing in f , and P ′ is P with all the
occurrences of x replaced by z,

12 Chapter 2. The Ag Specification Language

and the inference rules are those used for classical first-order logic and

- Generalization rule for the necessary modal statement:

f

[P]f

- Infinitary convergence rule:

(∀n : nat)(f ⇒ [Pn]g)
f ⇒ [P ∗]g

Once fork algebras and FODLwA have been fully introduced we can define Ag signatures
as FODLwA signatures that use the fork algebra constants and functions, and Ag theories
as Ag signatures plus the deductive system for both fork algebra and FODL.

In [FPB02], the following two theorems were presented. They are the main reason why
we believe Ag is a good choice as a software modeling language.

The first one shows how the existing gap between the syntax and semantics can be
bridged as a consequence of the representability theorem of the fork algebras. It is important
because, given a specification, the reader is allowed to reason about it in terms of binary
relations.

Theorem 2.4 Given an Ag theory Ψ, for each model A = 〈A,mA 〉 for Ψ there exists a
model B = 〈B,mB 〉 for Ψ in which the domain B consists of concrete binary relations.

As Ag is first-order dynamic logic of fork algebra terms, formulas are first-order dynamic
logic formulas in which the only predicate symbol appearing is “=”. That is the reason the
system can be divided in two parts, the first one is the set of axioms presented in 2.2 which
allows to prove fork algebra equations. The second part consists of the axioms and inference
rules presented in 2.10, which allows to prove the first-order dynamic logic formulas that
state properties of the terms involved in the specification. The completeness of the deductive
system allows to use theorem provers as syntactic tools for reasoning about specifications,
and consequently mechanize the task of system verification.

The last theorem shows the completeness of the deductive system for Ag.

Theorem 2.5 Completeness of the deductive system of Ag. Let Ψ ∪ {ψ} be a set of Ag

formulas. Then,
Ψ `Ag ψ iff Ψ |=Ag ψ .

Chapter 3

The PVS Specification and
Verification System

PVS (Prototype Verification System) is intended as an environment for constructing clear
and precise specifications and for developing readable proofs that have been mechani-
cally verified [ORS92, ORSvH95, Sha01]. A variety of examples have been verified using
PVS [CLM+95, ORSSC98]. The most substantial use of PVS has been in the verification of
the microcode for selected instructions of a commercial-scale microprocessor called AAMP5
designed by Rockwell-Collins [MS95] and in the loop project [vdBJ01]. The key elements
of the PVS design are captured by the combination of features listed below.

An expressive language with powerful deductive capabilities. The PVS specifica-
tion language is based on classical, simply typed, higher-order logic with base types such
as the Booleans bool and the natural numbers nat, and type constructors for functions [A
-> B], records [# a : A, b : B #], and tuples [A, B, C]. The PVS type system also ad-
mits predicate subtypes, e.g., {i : nat | i > 0} is the subtype of positive numbers. The
PVS type system includes dependent function, record, and tuple types, e.g., [# size: nat,
elems: [below[size] -> nat] #] is a dependent record where the type of the elems com-
ponent depends on the value of the size component. It is also possible to define recursive
abstract datatypes such as lists and trees. The definition of a recursive datatype can be
illustrated with the list type of the PVS prelude built from the constructors cons and null.
Theories containing the relevant axioms, induction schemes, and useful datatype operations
are generated from the datatype declaration.

list [T: TYPE]: DATATYPE
BEGIN
null: null?
cons (car: T, cdr:list):cons?
END list

PVS also has parametric theories, so that it is possible to capture, say, the notion of
sorting with respect to arbitrary array sizes, types, and ordering relations. Constraints on

13

14 Chapter 3. The PVS Specification and Verification System

the theory parameters can be stated by means of assumptions within the theory. When an
instance of a theory is imported with concrete parameters, there are proof obligations for
the corresponding instances of the parameter assumptions. A theory is a list of declarations
of constants (with or without definitions) and theorems. The PVS typechecker checks a
theory for simple type correctness and generates proof obligations (called TCCs for type
correctness conditions) corresponding to predicate subtypes. Typechecking is undecidable
for PVS to the extent that it involves discharging such proof obligations.

Powerful decision procedures with user interaction. PVS proofs are constructed
interactively. The primitive inference steps for constructing proofs are quite powerful.
They make extensive use of efficient decision procedures for equality and linear arith-
metic [Sho84, RS02, SR02]. They also exploit the tight integration between rewriting, the
decision procedures, and the use of type information [CRSS94]. PVS also uses BDD-based
propositional simplification so that it can combine the capability of simplifying very large
propositional expressions with equality, arithmetic, induction, and rewriting.

Higher-level inference steps can be defined by means of strategies (akin to LCF tac-
tics [GMW79]) written in a simple strategy language. Typical strategies include heuristic
instantiation of quantifiers, propositional and arithmetic simplification, and induction and
rewriting. The PVS proof checker tries to strike a careful balance between an automatic
theorem prover and a low-level proof checker.

Model checking with theorem proving. Many forms of finite-state verification, such
as linear temporal logic model checking, language containment, and bisimulation checking,
can be expressed in the mu-calculus [BCM+90, EL86]. The higher-order logic of PVS is
used to define the least and greatest fixpoint operators of the mu-calculus. When the state
type is finite, the mu-calculus expressions are translated into the propositional mu-calculus
and a propositional mu-calculus model checker can be used as a decision procedure. The
finite types are those built from booleans and scalars using records, tuples, or arrays over
subranges. Fairness cannot be expressed in CTL, but it can be defined using the mu-calculus.
BDD-based symbolic model checking is integrated into PVS as a decision procedure for
the Boolean fragment of the mu-calculus [RSS95]. The model checker can be invoked as
an interactive proof step together with rewriting, induction, and simplification using the
ground decision procedures. Automatic predicate abstraction has been implemented as an
interactive step for constructing finite-state property-preserving abstractions of infinite-state
systems [SS99]. Though this exercise does not use the model checker and abstractor, these
should play an important role in future work.

Deduction and Execution. A functional fragment of PVS has been given an execution
semantics that is supported by a code generator which produces Common Lisp code. The
code generator includes a destructive update optimization that translates PVS array updates
into destructive updates in Common Lisp, when it is safe to do so [Sha02]. The generated
code is also safe with respect to runtime errors if it is generated from a typechecked PVS
expression where all the generated proof obligations have been discharged.

Chapter 4

Encoding Ag Semantics in PVS

To build a proof checker for Ag using PVS as a semantic framework, we need to encode the
semantics of the language within the higher-order logic of PVS, and make use of some useful
and powerful features such as the abstract data-type mechanism [OS93]. The first step is
the construction of the FODLwA language objects in a way that allows us to define their
semantics as we did in Section 2.2. Next is the definition of the fork algebra language and the
encoding of the point-dense simple proper fork algebra terms as was shown in Section 2.1.
Finally, we show how the results of the previous steps must be combined in order to prove
properties of Ag specifications.

4.1 Encoding of FODLwA semantics

The syntax of FODLwA has been formally introduced in Definition 2.6. What we do is to
express the language objects in a way that allows us to define their semantics. Due to the
inductive nature of the definition of the language, we define it using the abstract datatype
mechanism [OS93]. Figure 4.1 contains the definition of the language.

When the specification is typechecked the abstract datatype mechanism generates a new
specification file. This new specification contains the theory of the objects defined by the
datatype, including the subtypes, map function, and the recursion combinator reduce nat.
The recursion combinator will be particularly useful in the encoding of the semantics because
it will be the basis for the complexity measure that we need to define the meaning function
recursively.

The definition of the language is parametric in the constant, metavariable, variable,
predicate and function symbols, and also in the functions that define the arity of the predi-
cate and function symbols. This allows us to work with only one formal language, but using
different instances of it depending on the sets of symbols used in particular problems.

Note that this definition of the language is not quite right. There is a restriction that
must be satisfied by the FODLwA language objects to be well formed; this restriction estab-
lishes that no metavariable symbol is allowed to occur in a program. It is easy to construct
a counterexample of this property following the previous definition. It is also easy to define
a recursive function that tests if an object is well formed.

15

16 Chapter 4. Encoding Ag Semantics in PVS

FODL_Language[Constant: TYPE ,
Metavariable: TYPE ,
Variable: TYPE ,
Predicate: TYPE , sigPredicate: [Predicate -> nat],
Function_: TYPE , sigFunction_: [Function_ -> nat]]:

DATATYPE WITH SUBTYPES Term_, Formula_, Program_

BEGIN

c(c: Constant): c?: Term_
m(m: Metavariable): m?: Term_
v(v: Variable): v?: Term_
F(f: Function_, lF:

lPrime: list[Term_] | sigFunction_(f) = length(lPrime)):
F?: Term_

TRUE: TRUE?: Formula_
NOT(f: Formula_): NOT?: Formula_
IMPLIES(f_0, f_1: Formula_): IMPLIES?: Formula_
P(p: Predicate, lP:

lPrime: list[Term_] | sigPredicate(p) = length(lPrime)):
P?: Formula_

EXISTS_(x: (v?), f: Formula_): EXISTS?: Formula_
<>(P: Program_, f: Formula_): DIAMOND?: Formula_
T?(f: Formula_): T??: Program_
A(pre_post: [Formula_, Formula_]): A?: Program_
SKIP: SKIP?: Program_
<|(x: (v?), t: Term_): ASSIGNMENT?: Program_
//(P_0, P_1: Program_): COMPOSITION?: Program_
+(P_0, P_1: Program_): CHOICE?: Program_
*(P: Program_): ITERATION?: Program_

END FODL_Language

Figure 4.1: Definition of FODLwA language within PVS.

Once the function that assures the well-formedness property is defined, we will work only
with the objects that satisfy this property. In PVS this type is specified as a predicate sub-
type, for example, we define the type of well-formed terms in the following way: “wf Term :
TYPE = {t: Term | wf (t)}”, and similarly for formulas and programs.

The semantics of terms, formulas and programs is encoded within PVS in the same way
as defined in Section 2.2. In Figure 4.2 we show the important parts of the theory that
define the meaning function for FODLwA.

The most important fact about this theory is that it introduces not only all the arguments
needed to build an instance of the well-formed language; it also is parametric on a set of
type predicates. For simplicity this feature was not presented in Section 2 but it does allow
for multi-sorted logics. Together with the type predicates we add a pair of functions that
map the variable and metavariable symbols to these predicates. The meaning function is
defined under the name of meaningF, and uses two auxiliary functions, m and mTerm.

The function meaningF is defined in a way that hides the universal quantification over
the assignment of values to metavariables, but the functions that really define the semantics
of a FODLwA formula are m, in the case of formulas and programs, and mTerm, in the case
of terms.

Note that there are other parameters of this theory. The parameters mTypePred,
mConstant, mPredicate, and mFunction are functions that map every type predicate,
constant, predicate and function symbol to a real object.

In Figure 4.3 we show the meaning function for terms. The interesting parts of this

4.1. Encoding of FODLwA semantics 17

FODL_semantic[Constant: TYPE ,
Metavariable: TYPE ,
Variable: TYPE ,
Predicate: TYPE , sigPredicate: [Predicate -> nat],
Function_: TYPE , sigFunction_: [Function_ -> nat],
TypePred: TYPE ,
TPMetavariable: [Metavariable -> TypePred],
TPVariable: [Variable -> TypePred],
Carrier: TYPE+ ,
mTypePred: [TypePred -> [Carrier -> bool]],
mConstant: [Constant -> Carrier],
mPredicate: [P: Predicate ->

[{l: list[Carrier] | sigPredicate(P) = length(l)} ->
bool]],

mFunction_: [F: Function_ ->
[{l: list[Carrier] | sigFunction_(F) = length(l)} ->

Carrier]]]: THEORY

BEGIN

ASSUMING
non_empty_types: ASSUMPTION

FORALL (t: TypePred): EXISTS (c: (mTypePred(t))): TRUE
ENDASSUMING

IMPORTING wf_FODL_Language[Constant,
Metavariable,
Variable,
Predicate, sigPredicate,
Function_, sigFunction_],

list_max

World_: TYPE = [v: Variable -> (mTypePred(TPVariable(v)))]

.

.

.
AssMetavariable: TYPE = [m: Metavariable -> (mTypePred(TPMetavariable(m)))]

.

.

.
mTerm(mMetavariable: AssMetavariable, w: World_)(t: wf_Term_):

RECURSIVE Carrier = ...

m(mMetavariable: AssMetavariable)(l: union[wf_Formula_, wf_Program_]):
RECURSIVE {u: union[PRED [World_], PRED [[World_, World_]]] |

CASES l OF inl(f): inl?(u), inr(P): inr?(u) ENDCASES} = ...

meaningF(f: wf_Formula_): PRED [World_] =
{w: World_ | FORALL (mMetavariable: AssMetavariable):

left(m(mMetavariable)(inl(f)))(w)}

END FODL_semantic

Figure 4.2: Theory that encodes the semantics of FODLwA.

function are how the previously defined meaning function for constant symbols is used to
complete the evaluation of terms in one of the base cases and how the map function of lists
is used to compute the meaning of a function symbol application to a list of terms.

The readers interested in the complete encoding of the semantics can take a look at the
PVS files.1 Here we just highlight the more interesting encodings. Figure 4.4 shows the use
of the type predicates to restrict the universe over which the variable symbols range when
they are existentially quantified. In the case of Figure 4.5 the µ-calculus theory, defined

1The files are available at ftp://ftp.csl.sri.com/pub/pvs/examples/AgExample/.

18 Chapter 4. Encoding Ag Semantics in PVS

mTerm(mMetavariable: AssMetavariable, w: World_)(t: wf_Term_):
RECURSIVE Carrier =

CASES t
OF c(c_var): mConstant(c_var),

m(m_var): mMetavariable(m_var),
v(v_var): w(v_var),
F(f_var, list_var):

mFunction_(f_var)(map(mTerm(mMetavariable, w))(list_var))
ENDCASES

MEASURE complexity(t)

Figure 4.3: Meaning function for terms.

in the PVS prelude, is used to compute the meaning of program iteration as a greatest fix
point.

m(mMetavariable: AssMetavariable)(l: union[wf_Formula_, wf_Program_]):
RECURSIVE {u: union[PRED [World_], PRED [[World_, World_]]] |

CASES l OF inl(f): inl?(u), inr(P): inr?(u) ENDCASES} =
CASES l

OF inl(f):
CASES f

OF
.
.
.
EXISTS_(var_var, f_var):

inl({w: World_ |
EXISTS (t: (mTypePred(TPVariable(v(var_var))))):

left(m(mMetavariable)(inl(f_var)))
(w WITH [(v(var_var)) := t])}),

.

.

.
ENDCASES ,

inr(P):
CASES P

OF
.
.
.

ENDCASES
ENDCASES

MEASURE complexity(CASES l OF inl(f): f, inr(P): P ENDCASES)

Figure 4.4: Meaning function for the existential quantifier.

4.2 Encoding of the Point-Dense Simple Proper Fork
Algebras

As we did in Section 4.1, when we encoded the semantics of FODLwA, we will separate the
job of encoding the semantics of the fork calculus in two basic steps; the first one will be
the definition of the symbols used to build terms and predicates over them, and the second
will be the encoding of the semantics of these symbols.

The definition of the symbols is straightforward, it is defined in terms of finite sets by
enumerating the elements they contain. Figure 4.6 shows the interesting parts of this file.

Note that we also defined the function that returns the arity of each of the predicate and
function symbols, and that this is the place to declare variable and metavariable symbols

4.2. Encoding of the Point-Dense Simple Proper Fork Algebras 19

m(mMetavariable: AssMetavariable)(l: union[wf_Formula_, wf_Program_]):
RECURSIVE {u: union[PRED [World_], PRED [[World_, World_]]] |

CASES l OF inl(f): inl?(u), inr(P): inr?(u) ENDCASES} =
CASES l

OF inl(f):
CASES f

OF
.
.
.

ENDCASES ,
inr(P):

CASES P
OF

.

.

.
*(P_var): inr({w: [World_, World_] | (LAMBDA (x: [World_, World_]):

mu[[World_, World_]] (LAMBDA (p: PRED [[World_, World_]]):
{wp: [World_, World_] |

({wpPrime: [World_, World_] | wpPrime‘1 = wpPrime‘2})(wp)
OR

({wpPrime: [World_, World_] |
EXISTS (w: World_):

right(m(mMetavariable)(inr(P_var)))(wpPrime‘1, w)
AND

p(w, wpPrime‘2)})(wp)})
(x))(w)})

.

.

.
ENDCASES

ENDCASES
MEASURE complexity(CASES l OF inl(f): f, inr(P): P ENDCASES)

Figure 4.5: Meaning function for the iteration program.

for a particular specification.
Once the language for the fork calculus has been declared we need to define its semantics.

The semantics of fork calculus terms were introduced in Definitions 2.4 and 2.5. We will
now see how to define this in PVS.

We first construct the structured universe which interprets fork calculus terms as bi-
nary relations. This is presented in Figure 4.7, which defines a binary tree structure over
elements. By defining the set of elements in this way, we obtain the closure of the set T
under the function pair. Again, as we mentioned before, the PVS type-checking mechanism
generates a specification containing the theory of these objects and we define the semantics
by importing the theory with appropriate actual parameters.

Note that the abstract data type mechanism generates inductive types, so the universe is
finitely generated. This restriction means that this construction represents only a subclass of
simple proper fork algebras; in particular, point-dense fork algebras cannot be represented.
Fixing this requires removing all inductive declarations from the generated theories, which
would lead to the theory presented in Figure 4.8.2

In Figures 4.9 and 4.10 we show how point-dense simple proper fork algebra terms
are defined using functions (mConstant, mPredicate and mFunction) that map constant,
predicate and function symbols to real constants, predicates and functions defined over

2The generated file has advantages aside from providing induction; in particular, the inclusive and disjoint
axioms are automatically discharged by the prover. For expediency the actual specifications include the
generated files, and we were careful not to make use of induction. We plan to correct this for the next
application of this semantics.

20 Chapter 4. Encoding Ag Semantics in PVS

FA_Language: THEORY

BEGIN

Constant: TYPE = {zero, one, one_prime, C_0, C_1, inl, inr,
Pi_1, Pi_2, ...}

.

.

.
Predicate: TYPE = {Leq, Functional, OneToOne, Pair}

sigPredicate: [Predicate -> nat] =
LAMBDA (P: Predicate): CASES P

OF Leq: 2,
Functional: 1,
OneToOne: 1,
Pair: 1

ENDCASES

Function : TYPE = {sum, product, complement, composition, converse, fork,
...}

sigFunction : [Function -> nat] =
LAMBDA (F: Function): CASES F

OF sum: 2,
product: 2,
complement: 1,
composition: 2,
converse: 1,
fork: 2,
Dom: 1,
FunctionUpdate: 2,
FunctionUndef: 2,
Neg: 1,

.

.

.
ENDCASES

END FA_Language

Figure 4.6: Definition of fork calculus language within PVS.

FA_Element[T: TYPE]: DATATYPE
BEGIN

element(t: T): element?
pair(el0, el1: FA_Element): pair?

END FA_Element

Figure 4.7: Structured universe within PVS.

binary relations. In Figure 4.9 we show how the theory that represents the structured
universe is imported to build the carrier of the algebra. Notice that we did not use the
axioms presented in Section 2 to assure point-density and simplicity, in their place we used
an axiom stating that for all a, b elements of the base set of the algebra the relation {〈a, b〉}
is a member of the carrier; the correctness of this choice follows from [Mad91, Theorem 51].

Finally in Figure 4.10 we show how this carrier is used to give semantics to the symbols.

4.3. Encoding of Ag 21

FA_Element_adt[T: TYPE]: THEORY
BEGIN

FA_Element: TYPE

element?, pair?: [FA_Element -> boolean]

element: [T -> (element?)]

pair: [[FA_Element, FA_Element] -> (pair?)]

t: [(element?) -> T]

el0: [(pair?) -> FA_Element]

el1: [(pair?) -> FA_Element]

ord(x: FA_Element): upto(1) = ...

FA_Element_element_extensionality: AXIOM ...
FA_Element_element_eta: AXIOM ...
FA_Element_pair_extensionality: AXIOM ...
FA_Element_pair_eta: AXIOM ...
FA_Element_t_element: AXIOM ...
FA_Element_el0_pair: AXIOM ...
FA_Element_el1_pair: AXIOM ...
FA_Element_inclusive: AXIOM ...
FA_Element_disjoint: AXIOM ...

END FA_Element_adt

Figure 4.8: Theory that models the structured universe within PVS.

4.3 Encoding of Ag

Sections 4.1 and 4.2 suffice to build a framework in which it is possible to prove properties
written in Ag. This is achieved by building a new theory in which the FODLwA semantics
is imported, instantiated on the sets of symbols defined as the language of the fork algebra
and the meaning functions for these symbols.

Note that the semantics presented so far just uses standard PVS features and provides
the means to prove every property written in the first-order dynamic logic of fork algebras.
But we want more than just the basic capability; to be useful the language must allow the
introduction of new types, predicates and functions, and in this case atomic actions, that
are application specific.

The introduction of new definitions is straightforward. To add a constant, predicate or
function definition, simply define its name as an element of the corresponding set in the
theory that defines the fork algebra language and the semantics associated with that name.
Proving properties of this extended language is the same as described earlier in this section.
Adding atomic actions definitions does not present any difficulties, simply define them in
a new theory that imports the extended language. This is illustrated in the next section
where we show how to build and verify a specification within this framework.

22 Chapter 4. Encoding Ag Semantics in PVS

FA_semantic: THEORY

BEGIN

IMPORTING FA_Language

.

.

.
Element: TYPE+
c_0: Element
c_1: Element
o_Elements: PRED [Element]

non_empty_o_Elements: AXIOM
EXISTS (e: (o_Elements)): TRUE

empty_intersection_of_types: AXIOM
FORALL (e: Element):

(e = c_0 AND NOT e = c_1 AND NOT o_Element(e)) OR
(NOT e = c_0 AND e = c_1 AND NOT o_Element(e)) OR
(NOT e = c_0 AND NOT e = c_1 AND o_Element(e))

IMPORTING FA_Element_adt[Element]
Carrier: TYPE FROM PRED [[FA_Element, FA_Element]]

carrier_point_dense: AXIOM
FORALL (a: FA_Element):

Carrier_pred(LAMBDA (wp: [FA_Element, FA_Element]):
wp‘1 = a AND wp‘2 = a)

.

.

.
END FA_semantic

Figure 4.9: Construction of the carrier of the calculus.

4.3. Encoding of Ag 23

FA_semantic: THEORY

BEGIN
.
.
.
zero: Carrier = LAMBDA (wp: [FA_Element, FA_Element]): FALSE
one: Carrier = LAMBDA (wp: [FA_Element, FA_Element]): TRUE
one_prime: Carrier = LAMBDA (wp: [FA_Element, FA_Element]): wp‘1 = wp‘2

.

.

.
sum(c0, c1: Carrier): Carrier = LAMBDA (wp: [FA_Element, FA_Element]): c0(wp) OR c1(wp)

.

.

.
converse(c: Carrier): Carrier = LAMBDA (wp: [FA_Element, FA_Element]): c((wp‘2, wp‘1))
fork(c0, c1: Carrier): Carrier = LAMBDA (wp: [FA_Element, (pair?)]):

c0((wp‘1, el0(wp‘2))) AND c1((wp‘1, el1(wp‘2)))

.

.

.
Leq(c0, c1: Carrier): bool = sum(c0, c1) = c1
Functional(c: Carrier): bool = Leq(composition(converse(c), c), one_prime)

.

.

.
mConstant: [Constant -> Carrier] =

LAMBDA (c: Constant): CASES c
OF zero: zero,

one: one,
one_prime: one_prime,

.

.

.
ENDCASES

mPredicate: [P: Predicate -> [{l: list[Carrier] | sigPredicate(P) = length(l)} -> bool]] =
LAMBDA (P: Predicate): CASES P

OF Leq:
LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 2}):

Leq(nth(l, 0), nth(l, 1)),
Functional:

LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 1}):
Functional(nth(l, 0)),

.

.

.
ENDCASES

mFunction_: [F: Function_ -> [{l: list[Carrier] | sigFunction_(F) = length(l)} -> Carrier]] =
LAMBDA (F: Function_): CASES F

OF sum:
LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 2}):

sum(nth(l, 0), nth(l, 1)),

.

.

.
converse:

LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 1}):
converse(nth(l, 0)),

fork:
LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 2}):

fork(nth(l, 0), nth(l, 1)),

.

.

.
ENDCASES

END FA_semantic

Figure 4.10: Usage of the structured universe to give semantics to the fork calculus constants,
predicates and functions.

Chapter 5

Case Study: A Cache System

In this section we consider as a case study a cache system.1 This example was presented by
Daniel Jackson [JSS01] and was used to compare Ag with Jackson’s specification language
Alloy in [FBP01].

The cache system is built from a memory and a cache; the system keeps track of the
dirty addresses to provide a function that flushes the content associated with all these
addresses by the cache into the memory taking it to a consistent state. The functions that
the specification provides are:

- DirtyCacheWrite: this action associates an address with possibly new data in the
cache system,

- DirtyFlush: this action flushes the data associated with a certain address in the cache
into the memory,

- DirtyLoad: this action loads the data associated with a certain address in the memory
into the cache, and

- DirtySetFlush: this action has the same effect as DirtyFlush but over all the dirty
addresses.

A cache system is said to be in a consistent state if all the data in the cache is reflected
by the data contained in the memory.

The following figures show some parts of the specification of the cache system written
in Ag, and how this specification is translated to PVS theories to make the verification
possible.

Figure 5.1 shows how the domains of the specification are turned into predicates over
the carrier of the calculus. This part of the specification must be located in the theory that
defines the semantics of the fork calculus. Note how the primitive domains are expressed
as partial identities. The definition of the type DirtyCacheSystem is analogous to that of
type DirtyCache.

1During the example the prefix Dirty will appear frequently. This is because the example was derived
from a simpler one that does not involve any administration of the information corresponding to the dirty
addresses.

24

25

Addr: TYPE
Data: TYPE
Memory: TYPE = Addr -> Data
Cache: TYPE = Addr -> Data
Dirty: TYPE = set[Addr]
DirtyCache: TYPE = {dc: Cache +_circ Dirty |

Dirty(dc) <= Dom(Cache(dc))}
DirtyCacheSystem: TYPE = {cs: Memory +_circ DirtyCache |

Dom(Cache(DirtyCache(cs)) <= Dom(Memory(cs))}
.
.
.

Element: TYPE+
c_0: Element
c_1: Element
Addr_Element: PRED [Element]
Data_Element: PRED [Element]

non_empty_Addr: AXIOM
EXISTS (e: (Addr_Element)): TRUE

non_empty_Data: AXIOM
EXISTS (e: (Data_Element)): TRUE

empty_intersection_of_types: AXIOM
FORALL (e: Element):

(e = c_0 AND NOT e = c_1 AND NOT Addr_Element(e) AND NOT Data_Element(e)) OR
(NOT e = c_0 AND e = c_1 AND NOT Addr_Element(e) AND NOT Data_Element(e)) OR
(NOT e = c_0 AND NOT e = c_1 AND Addr_Element(e) AND NOT Data_Element(e)) OR
(NOT e = c_0 AND NOT e = c_1 AND NOT Addr_Element(e) AND Data_Element(e))

IMPORTING FA_Element_adt[Element]
Carrier: TYPE = PRED [[FA_Element, FA_Element]]

one_prime_Addr: Carrier = LAMBDA (wp: [FA_Element, FA_Element]): one_prime(wp) AND Addr(wp‘1)
one_prime_Data: Carrier = LAMBDA (wp: [FA_Element, FA_Element]): one_prime(wp) AND Data(wp‘1)

Addr: PRED [Carrier] = LAMBDA (c: Carrier):
Pair(c) AND Leq(c, one_prime_Addr)

Data: PRED [Carrier] = LAMBDA (c: Carrier):
Pair(c) AND Leq(c, one_prime_Data)

Memory: PRED [Carrier] = LAMBDA (c: Carrier):
Leq(c, composition(composition(one_prime_Addr, one), one_prime_Data)) AND
Functional(c)

Cache: PRED [Carrier] = LAMBDA (c: Carrier):
Leq(c, composition(composition(one_prime_Addr, one), one_prime_Data)) AND
Functional(c)

Dirty: PRED [Carrier] = LAMBDA (c: Carrier): Leq(c, one_prime_Addr)
DirtyCache: PRED [Carrier] = LAMBDA (c: Carrier):

EXISTS (ca: (Cache), d: (Dirty)):
c = sum(composition(fork(composition(Pi_1, one_prime_C_0),

composition(Pi_2, composition(ca, inl))),
Pi_2),

composition(fork(composition(Pi_1, one_prime_C_1),
composition(Pi_2, composition(d, inr))),

Pi_2)) AND
Leq(Dirty(c), Dom(Cache(c)))

DirtyCacheSystem: ...

Figure 5.1: Specification of the domains of the cache system.

Figure 5.2 shows the usage of PVS lambda expressions to define Ag atomic actions that
can be applied to any variable. In the same way, the predicate that expresses the consistency
of a cache system can be written. Figure 5.3 shows the translation of a property that is
desirable to hold over these cache systems. This property expresses that given a cache

26 Chapter 5. Case Study: A Cache System

DirtyCacheWrite: Ag Action [cs: DirtyCacheSystem]
cs = cs0 => [DirtyCacheWrite] EXISTS (a: Addr, d: Data):

Cache(DirtyCache(cs)) =
FunctionUpdate(Cache(DirtyCache(cs0)), <a, d>) AND

Dirty(DirtyCache(cs)) = Dirty(DirtyCache(cs0)) U a) AND
Memory(cs) = Memory(cs0)

.

.

.

pre_DirtyCacheWrite: [(v?) -> wf_Formula_] =
LAMBDA (v: (v?)): v = m(cs0)

post_DirtyCacheWrite: [(v?) -> wf_Formula_] =
LAMBDA (v: (v?)):

EXISTS_(v(addr),
(EXISTS_(v(data),

(wf_F(Cache, (:wf_F(DirtyCache, (:v:)):)) =
wf_F(FunctionUpdate, (:wf_F(Cache, (:wf_F(DirtyCache, (:m(cs0):)):)),

wf_F(composition, (:wf_F(composition, (:v(addr), c(one):)),
v(data):)):)) AND

wf_F(Dirty, (:wf_F(DirtyCache, (:v:)):)) =
wf_F(sum, (:wf_F(Dirty, (:wf_F(DirtyCache, (:m(cs0):)):)), v(addr):)) AND

wf_F(Memory, (:v:)) = wf_F(Memory, (:m(cs0):))))))
DirtyCacheWrite: [(v?) -> wf_Program_] =

LAMBDA (v: (v?)): A(pre_DirtyCacheWrite(v), post_DirtyCacheWrite(v))

.

.

.

Figure 5.2: Specification of the atomic actions of the cache system.

system that satisfies the predicate NonDirtyCache,2 every succession of executions of the
atomic actions previously described, followed by an execution of the action DirtySetFlush,
leaves the cache system in a consistent state.

Consistency_criteria: THEOREM
FORALL (cs: DirtyCacheSystem): NonDirtyCache(cs) =>

[(DirtyCacheWrite(cs)+DirtyFlush(cs)+DirtyLoad(cs)+
DirtySetFlush(cs))*;DirtySetFlush(cs)]DirtyCacheConsistent(cs)

Consistency_criteria: THEOREM
FORALL (w: World_):

meaningF(FORALL_(v(cs), NonDirtyCache(v(cs)) IMPLIES
[](*(DirtyCacheWrite(v(cs))+DirtyFlush(v(cs))+

DirtyLoad(v(cs))+DirtySetFlush(v(cs)))//DirtySetFlush(v(cs)),
DirtyCacheConsistent(v(cs)))))(w)

Figure 5.3: Specification of the properties of the cache system.

Figure 5.4 shows the PVS proof script of the property stated in figure 5.3.
Some of the proof commands used during the proof are not built in PVS commands,

but are strategies implemented to make the proof checker easier to use on Ag specifications.
These strategies are not essential for verifying Ag specifications, but proofs are more elegant
compared with the proofs that can be carried without the strategies.

The PVS language allows a direct encoding of Ag, which was compared with Alloy
in [FBP01]. One of the advantages of the restrictions imposed by Alloy is that their analy-

2The predicate NonDirtyCache is satisfied if and only if the addresses of the cache that were not involved
in the operation of writing in the cache system remain consistent with respect to the data contained in the
memory of the cache system.

27

;;; Proof for formula SpecProperties.Consistency_criteria
;;; developed with old decision procedures
(""
(EXPAND-MEANING 1)
(EXPAND-MEANING 1)
(EXPAND-MEANING 1)
(SKOSIMP*)
(PURIFY-FODL -1)
(LEMMA "PDL_4_box_form")
(INST -1 "DirtyCacheConsistent(v(cs))"
"*(DirtyCacheWrite(v(cs)) + DirtyFlush(v(cs)) + DirtyLoad(v(cs)) + DirtySetFlush(v(cs)))"
"DirtySetFlush(v(cs))" "w!1 WITH [(cs) := t!1]")

(EXPAND-MEANING -1)
(INST -1 "mMetavariable!1")
(EXPAND-MEANING -1)
(PROP)
(HIDE 2 3)
(EXPAND-MEANING 1)
(SKOSIMP*)
(LEMMA "AllStar_preserves_NonDirtyCache")
(EXPAND "AllStar_preserves_NonDirtyCache" -1)
(EXPAND-MEANING -1)(EXPAND-MEANING -1)
(INST -1 "w!1 WITH [(cs) := t!1]")
(INST -1 "mMetavariable!1")
(INST -1 "(w!1 WITH [(cs) := t!1])(cs)")
(EXPAND-MEANING -1)
(PROP)
(("1" (EXPAND-MEANING -1)

(INST -1 "wPrime!1")
(PROP)
(PURIFY-FODL -1)
(LEMMA "DirtySetFlush_leaves_DirtyCacheConsistent")
(EXPAND "DirtySetFlush_leaves_DirtyCacheConsistent" -1)
(EXPAND-MEANING -1)
(EXPAND-MEANING -1)
(INST -1 "wPrime!1")
(INST -1 "mMetavariable!1")
(INST -1 "wPrime!1(cs)")
(EXPAND-MEANING -1)
(PROP)
(("1" (HIDE -2 -3 -4)

(PURIFY-FODL))
("2" (HIDE -2 -3 2)

(PURIFY-FODL))))
("2" (HIDE -1 2)

(PURIFY-FODL))))

Figure 5.4: Proof of the consistency criteria for the cache system.

sis tool is much more automatic. On the other hand, there are specifications and properties
that cannot even be expressed in Alloy, but which can be stated and proved in this frame-
work. The main thrust of future work will be to provide more automation so that routine
verification is automatic, while more difficult properties can still be analyzed by interacting
with the prover. We plan to take advantage of the abstractor and model checker of PVS for
much of this automation.

Chapter 6

Conclusions

We developed a semantic framework for the Ag specification language. This framework
makes use of theorem proving techniques applicable to this language, which we believe is a
powerful language for designing systems. The framework allows the use of PVS to develop
Ag specifications and prove properties about them. Strategies have been developed to make
the proofs more automatic.

The availability of this framework means that Ag may now be used on real problems, to
see how useful it is in practice. Of course, in the long run Ag is expected to be used with
many tools, including other theorem provers, model checkers, and static analyzers. But
PVS provides an easy way to try out different approaches before committing resources.

The Ag semantic framework also serves as a good case study of a semantic embedding
into the higher-order logic of PVS. Because its implementation makes use of many features
of PVS, it can be used as the basis for a tutorial on the advanced use of this tool.

There is still much that needs to be done to make this a useful tool. Proof construction
can be improved by developing strategies that recognize patterns that appear as consequence
of the implementation of the framework so the user can concentrate on what needs to be
proved instead of dealing with framework details.

The case study presented here is a toy example, and with a larger application it may
turn out that more is needed from the system, including better control of the prettyprinter
and more automatic strategies. These may need to be application specific, and tools should
be provided so they can be defined conveniently.

Reformulating the specification language may improve the use of PVS to validate Ag

specifications. Note that we used dynamic logic to describe dynamic properties of a static
model described using fork algebras. Following this, if we can formulate the dynamic prop-
erties of the system using fork algebra, the logic used over the terms would no longer be
needed and consequently the framework would become simpler.

In fact dynamic logic can be translated to fork algebra due to [FBM01], but this trans-
lation was not available at the time the specification language was designed.

Even if fork algebras can embed all the other logics that are relevant for reasoning about
system correctness, it is still useful to have a dynamic logic over fork algebras to reason
explicitly about evolving program behavior. This is because much of the structure is lost,
making it harder to analyze the systems.

28

29

Dynamic logic may also be used to specify how designs evolve. If we describe little design
decisions, such as adding a new type to the model, in terms of atomic actions, the use of
the logic allows to state properties about the process of system design, and can be used to
formulate and prove design decision invariants. The same argument can be used to argue in
favor of the use of any logic over fork algebra, and in this sense it would be useful to build
frameworks for every logic that can state interesting properties of the process of system
design, as well as the resulting systems.

Appendix A

Displaying Semantically
Embedded Logics

In this section we want to discuss some facts that relate to esthetics. The first is how to
display the formulas of a sequent. An Ag formula is an object of a particular theory that
has no meaning until it is interpreted using the semantics defined for those objects.

Suppose now that we have the Ag formula f . f can not be part of a sequent, because
it is not boolean. This is the reason why if we want to prove that f is a theorem, we will
express that as trying to prove that the formula ∀(w : World) : meaningF (f)(w) holds.
Note that there is no ambiguity in saying that f holds, because by Theorem 2.5 f is a
theorem if and only if f is valid in the semantics we defined.

This problem is very easy to solve, using the PVS conversion mechanism we defined the
following conversion for the type wf FODL Formula:

meaning_conv: MACRO [wf_Formula_ -> bool] =
LAMBDA (f: wf_Formula_): FORALL (w: World_): meaningF(f)(w)

Once this function is declared to be a conversion, the user of the framework
can simply state “Theorem 1: THEOREM f” and it will be converted to “Theorem 1:

THEOREM meaning conv(f)” which expands to “Theorem 1: THEOREM FORALL (w: World):

meaningF(f)(w)”. As the function was defined as a MACRO, its expansion is done auto-
matically by PVS. This means that when the user tries to prove a theorem declared as
“Theorem 1: THEOREM f”, PVS automatically shows the following sequent:

|-------
{1} FORALL (w: World_): meaningF(f)(w)

The other esthetical aspect of this discussion is the fact that there is no need for
the meaning function to be shown in the sequent. There is no ambiguity in saying
“FORALL (w: World): f(w)” or “FORALL (w: World): meaningF(f)(w)”, and analogously
in saying “FORALL (w: World): FORALL (M: AssMetavariable): left(m(M)(inl(f)))(w)” or
“FORALL (w: World): FORALL (M: AssMetavariable): f(M)(w)”. Note here that we are sim-
ply arguing that the meaning function does not need to be shown; it was explained at the

30

31

beginning of this section why the meaning function is so important in the use of PVS as a
proof checker for Ag.

As a consequence, it is desirable to modify the function that prints the formulas that
appear in the sequent in a more friendly way thus avoiding the appearance of the meaning
functions. This is the reason that the strategy expand-meaning was introduced, (see figure
5.4 in section 5). In this context, given the Ag formula f IMPLIES g, once the quantifiers
are skolemized PVS shows a sequent as follows.

...
|-------
...
{n} (f IMPLIES g)(w)

...
|-------
...
{n} (f IMPLIES g)(M)(w)

The different arguments depend on the meaning function applied to f IMPLIES g. Note
that in either case, the only thing we want is to expand the meaning function in order
to obtain a sequent with a formula in which the IMPLIES operator is a higher-order logic
operator instead of an Ag operator, and the name of the meaning function is unimportant.

This is similar to the way the Duration Calculus is embedded in PVS as described
in [SS93], but the implementation there provides a separate parser and prettyprinter. The
solution described above is much easier to implement, but less general. For example, PVS
does not allow ; to be used as an operator, so // is used instead.

Appendix B

Structure of the Framework

In figure B.1 we present the structure of the framework built to reason about Ag specifica-
tions. After that we give a concise description of the files and how they are related.

FA_axioms.pvs

FA_lemmas.pvs

FODL_axioms.pvs

FODL_lemmas.pvs

FA_Language.pvs wf_FODL_Language.pvs

FODL_Language.pvs

FODL_Language_adt.pvs

SpecActions.pvs SpecPredicates.pvs

FA_semantic.pvs

FA_Elements.pvs

FA_Elements_adt.pvs

FODL_semantic.pvs

FODL_conversions.pvs

list_max.pvs

RTC.pvs

SpecProperties.pvs

a.−

a.−

b.− b.−

Figure B.1: Structure of the framework.

Solid arrows denote importation, for example, “FODL semantic.pvs” imports
“list max.pvs”. Dashed arrows are used in the cases that the importation occurs through a
file generated by the PVS ’ typechecking mechanism, for example, once “FA Elements.pvs”

32

33

is typechecked, PVS generates the file “FA Elements adt.pvs” which contains the theory of
the objects defined in “FA Elements.pvs”.

The two solid boxes marked as “a.-” group files that define the syntax of the language;
inside one of these boxes appears the file “FA Language.pvs” that defines the language
of the fork calculus, and inside the other there is a group of files (“FODL Language.pvs”,
“FODL Language adt.pvs” and “wf FODL Lan-guage.pvs”) that are used to define the lan-
guage of FODLwA.

Solid boxes marked with a “b.-” group files used to make the framework easier to use;
in both cases these files introduce a battery of proved useful lemmas.

Dotted boxes group the files that contain definitions that are specification dependent; the
files “FA Language.pvs” and “FA semantic.pvs” include the definitions of the domains that
appear in the specification, and may introduce new constants, predicates and functions.
The files “SpecActions.pvs”, “SpecPredicates.pvs” and “SpecProperties.pvs” provide the
obvious declarations.

The following is a list of the files that appear in figure B.1 with a brief description of
their content:

FA Element.pvs: definition of the elements used to give semantics to the fork calculus,

FA Elements adt.pvs: theory of the objects declared in the file “FA -Element.pvs”, gener-
ated by the PVS ’ typechecking mechanism,

FA Language.pvs: definition of the fork calculus language symbols,

FA semantic.pvs: definition of the fork calculus language semantics,

FA axioms.pvs/FA lemmas.pvs: commonly used lemmas that can be introduced as part of
the proofs,

FODL Language.pvs: definition of the FODLwA language objects,

FODL Language adt.pvs: theory of the objects declared in the file “FODL -
Language adt.pvs”, generated by the PVS ’ typechecking mechanism,

wf FODL Language.pvs: definition of the “well-formedness” criteria for the objects of the
FODLwA language,

FODL semantic.pvs: definition of the FODLwA language object semantics,

FODL axioms.pvs/FODL lemmas.pvs: common used lemmas that can be introduced as part
of the proofs,

FODL conversions.pvs: definition of some usefull conversions,

SpecActions.pvs/SpecPredicates.pvs/SpecProperties.pvs: atomic actions, predi-
cates and properties definitions that come from the specification.

Bibliography

[BCM+90] J. R. Burch, E. M. Clarke, K. L McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 1020 states and beyond. In 5th Annual IEEE Symposium
on Logic in Computer Science, pages 428–439, Philadelphia, PA, June 1990.
IEEE Computer Society.

[BS81] S. Burris and H. P. Sankappanavar. A Course in Universal Algebra. Graduate
Texts in Mathematics. Springer Verlag, 1981.

[CLM+95] David Cyrluk, Patrick Lincoln, Steven Miller, Paliath Narendran, Sam Owre,
Sreeranga Rajan, John Rushby, Natarajan Shankar, Jens Ulrik Skakkebæk,
Mandayam Srivas, and Friedrich von Henke. Seven papers on mechanized
formal verification. Technical Report SRI-CSL-95-3, Computer Science Labo-
ratory, SRI International, Menlo Park, CA, January 1995.

[CRSS94] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem proving
for hardware verification. In Ramayya Kumar and Thomas Kropf, editors,
Theorem Provers in Circuit Design (TPCD ’94), volume 901 of Lecture Notes
in Computer Science, pages 203–222, Bad Herrenalb, Germany, September
1994. Springer-Verlag.

[dS01] Harrier de Swart, editor. Proceedings of RelMiCS’6 - TARSKI, October 2001.
Oisterwijk, the Netherlands.

[EL86] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments
of the propositional mu-calculus (extended abstract). In Proceedings, Sympo-
sium on Logic in Computer Science, pages 267–278, Cambridge, MA, 16–18
June 1986. IEEE Computer Society.

[FBH97] M. F. Fŕıas, G. A. Baum, and A. M. Haeberer. Fork algebras in algebra, logic
and computer science. Fundamenta Informaticae, 32:1–25, 1997.

[FBHV95] M. F. Frias, G. A. Baum, A. M. Haeberer, and P. A. S. Veloso. Fork alge-
bras are representable. Bulletin of the Section of Logic, 24(2):64–75, 1995.
University of Lódź.

[FBM01] M. F. Fŕıas, G. A. Baum, and T. S. E. Maibaum. Interpretability of first-
order dynamic logic in a relational calculus. In de Swart [dS01], pages 66–80.
Oisterwijk, the Netherlands.

34

Bibliography 35

[FBP01] Marcelo F. Fŕıas, Gabriel A. Baum, and Carlos G. López Pombo. A compar-
isson of Ag with Alloy. In de Swart [dS01], pages 365 – 377. Oisterwijk, the
Netherlands.

[FO98] M. F. Fŕıas and E. Orlowska. Equational reasoning in non classical logics.
Journal of Applied Non Classical Logics, 8(1–2):27–66, 1998.

[FPB02] Marcelo F. Fŕıas, Carlos G. Lopez Pombo, and Gabriel A. Baum. The specifica-
tion language Ag. Available at http://www.dc.uba.ar/people/profesores/
mfrias/Files/Downloads/Ag.ps, February 2002.

[Fŕı02] Marcelo F. Fŕıas. Fork Algebras in Algebra. Logic and Computer Science.
World Scientific Publishing Co., 2002.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[Ham88] A. G. Hamilton. Logic for mathematicians. Cambridge University Press,
September 1988.

[HKT00] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, October 2000.

[HV91] A. M. Haeberer and P. A. S. Veloso. Partial relations for program deriva-
tion: Adequacy, inevitability and expressiveness. In Working Conference on
Constructing Programs from Specifications, pages 319–371. IFIP TC2, Con-
structing Programs from Specifications, North Holland, 1991.

[Jac02] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Trans-
actions on Software Engineering and Methodology, 11(2):256–290, April 2002.

[JSS01] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity
mechanism. In Proc. ACM SIGSOFT Conf. Foundations of Software En-
gineering/European Software Engineering Conference (FSE/ESEC ’01), Vi-
enna, Austria, 2001.

[Lyn50] R. Lyndon. The representation of relation algebras. Annals of Mathematics,
51(2):707–729, 1950.

[Lyn56] R. Lyndon. The representation of relation algebras, part ii. Annals of Math-
ematics, 63(2):294–307, 1956.

[Mad91] Roger D. Maddux. Pair-dense relation algebras. Transactions of the American
Mathematical Society, 328(1):83–131, November 1991.

[Min00] Paul S. Miner. Analysis of the SPIDER fault-tolerance protocols. In C. Michael
Holloway, editor, LFM 2000: Fifth NASA Langley Formal Methods Work-
shop, Hampton, VA, June 2000. NASA Langley Research Center. Slides
available at http://shemesh.larc.nasa.gov/fm/Lfm2000/Presentations/
lfm2000-spider/.

36 Bibliography

[Mor88] Carroll Morgan. The specification statement. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 10(3):403–419, 1988.

[MS95] Steven P. Miller and Mandayam Srivas. Formal verification of the AAMP5
microprocessor: A case study in the industrial use of formal methods. In
WIFT ’95: Workshop on Industrial-Strength Formal Specification Techniques,
pages 2–16, Boca Raton, FL, 1995. IEEE Computer Society.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

[ORSSC98] Sam Owre, John Rushby, N. Shankar, and David Stringer-Calvert. PVS: an
experience report. In Dieter Hutter, Werner Stephan, Paolo Traverso, and
Markus Ullman, editors, Applied Formal Methods—FM-Trends 98, volume
1641 of Lecture Notes in Computer Science, pages 338–345, Boppard, Ger-
many, October 1998. Springer-Verlag.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107–125, February 1995.

[OS93] S. Owre and N. Shankar. Abstract datatypes in PVS. Technical Report CSL-
93-9R, SRI International, December 1993. Subtantially revised in June 1997.

[OSRSC01a] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language reference. SRI International, version 2.4 edition, December 2001.

[OSRSC01b] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Prover Guide. SRI International, version 2.4 edition, November 2001.

[OSRSC01c] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
System Guide. SRI International, version 2.4 edition, December 2001.

[Pra76] V.R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th
Ann. IEEE Symp. on Foundations of Comp. Sci., pages 109–121, October
1976.

[RS02] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. Technical
report, SRI Computer Science Laboratory, April 2002.

[RSS95] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking
with automated proof checking. In Pierre Wolper, editor, Computer-Aided
Verification, CAV ’95, volume 939 of Lecture Notes in Computer Science,
pages 84–97, Liege, Belgium, June 1995. Springer-Verlag.

[Sha01] Natarajan Shankar. Using decision procedures with a higher-order logic. In
Theorem Proving in Higher Order Logics: 14th International Conference,
TPHOLs 2001, volume 2152 of Lecture Notes in Computer Science, pages

Bibliography 37

5–26, Edinburgh, Scotland, September 2001. Springer-Verlag. Available at
ftp://ftp.csl.sri.com/pub/users/shankar/tphols2001.ps.gz.

[Sha02] Natarajan Shankar. Static analysis for safe destructive updates in a functional
language. In A. Pettorossi, editor, 11th International Workshop on Logic-based
Program Synthesis and Transformation (LOPSTR 01), volume 2372 of Lecture
Notes in Computer Science, pages 1–24, Paphos, Cyprus, November 2002.
Springer-Verlag. Available at ftp://ftp.csl.sri.com/pub/users/shankar/
lopstr01.pdf.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1–12, January 1984.

[SR02] Natarajan Shankar and Harald Rueß. Combining Shostak theories. In Sophie
Tison, editor, International Conference on Rewriting Techniques and Appli-
cations (RTA ‘02), volume 2378 of Lecture Notes in Computer Science, pages
1–18, Copenhagen, Denmark, July 2002. Springer-Verlag.

[SS93] Jens U. Skakkebæk and N. Shankar. A Duration Calculus proof checker: Using
PVS as a semantic framework. Technical Report SRI-CSL-93-10, Computer
Science Laboratory, SRI International, Menlo Park, CA, December 1993.

[SS99] Hassen Säıdi and N. Shankar. Abstract and model check while you prove.
In Nicolas Halbwachs and Doron Peled, editors, Computer-Aided Verification,
CAV ’99, volume 1633 of Lecture Notes in Computer Science, pages 443–454,
Trento, Italy, July 1999. Springer-Verlag.

[Tar41] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73–89,
1941.

[vdBJ01] Joachim van den Berg and Bart Jacobs. The loop compiler for Java and JML.
In T. Margaria and W. Yi, editors, Tools and Algorithms for the Construction
and Analysis of Systems: 7th International Conference, TACAS 2001, volume
2031 of Lecture Notes in Computer Science, pages 299–312, Genova, Italy,
April 2001. Springer-Verlag.

[VHF95] P. A. S. Veloso, A. M. Haeberer, and M. F. Fŕıas. Fork algebras as algebras
of logic. Abstracts of the Logic Colloquium ’94, page 127, July 1995. Also in
Bulletin of Symbolic Logic vol. 1, No. 2 (1995), pp. 265-266.

