
PVSio Reference Manual
Version 2.b (DRAFT) • August 2005

César A. Muñoz
munoz@nianet.org

http://research.nianet.org/~munoz/PVSio

National Institute of Aerospace (NIA)
Formal Methods Group • 100 Exploration Way • Hampton VA 23666

munoz@nianet.org
http://research.nianet.org/~munoz/PVSio

PVSio ∈ Packages for Verification Survival

The development of PVSio was supported by the National Aeronautics and Space Adminis-
tration under NASA Cooperative Agreement NCC-1-02043.

CONTENTS 1

Contents

Contents . 1

1 Introduction 3

2 Installing PVSio 5

3 PVSio for the Impatient 7
3.1 Read, Eval, Print . 7
3.2 Writing User-defined Semantic Attachments 7
3.3 Animating a Functional Specification . 9
3.4 Stand Alone Evaluations . 10
3.5 Proving Ground Properties . 11

4 Read-Eval-Print Interface 15
4.1 PVSio Special Commands . 16
4.2 PVSio Emacs Commands . 16

5 Semantic Attachments 19
5.1 Overloading . 20
5.2 From PVS to Common Lisp and Back Again 21

6 Library 23
6.1 Statements . 24
6.2 Sequence and Bounded Loop . 24
6.3 Conditionals . 24
6.4 Unbounded Loops . 25
6.5 Exceptions . 25
6.6 Mutable and Global Variables . 25
6.7 Strings . 25
6.8 Input/Output . 28
6.9 Floating Point Arithmetic . 28
6.10 Pretty Printing . 29
6.11 Parsing . 29
6.12 PVS Lexer and Parser . 29

7 Stand Alone Interface 31

8 Proof Rules 33
8.1 eval-formula . 33
8.2 eval-expr . 33
8.3 eval . 33
PVSio Index . 34
Bibliography . 35

2 CONTENTS

Chapter 1

Introduction

PVS [4] is a verification system based on a typed classical higher-order logic enriched with
predicate subtyping and dependent records [6]. The system is widely known by its expressive
specification language and its powerful theorem prover. A considerable large subset of the
PVS specification language is executable.

The ground evaluator is an experimental feature of PVS that enables the animation of
functional specifications. The ground evaluator extracts Common Lisp code from PVS func-
tional specifications to evaluate ground expressions on top of the PVS underlying Common
Lisp machine [7].

Semantic attachments [2] are user-defined Common Lisp code that enhances the function-
ality of the ground evaluator. For instance, uninterpreted PVS functions can be defined in
Common Lisp by writing an appropriate semantic attachment. Semantic attachments bring
all the computational power and side effect features of Common Lisp to the PVS ground
evaluator. However, semantic attachments are a potential source of problems in PVS. In-
deed, as semantic attachments are not typechecked by PVS, they can inadvertently break
the system.

PVSio [3] is a PVS package1 that extends the ground evaluator with a predefined li-
brary of imperative programming language features such as side effects, unbounded loops,
input/output operations, floating point arithmetic, exception handling, pretty printing, and
parsing. The PVSio library is implemented via semantic attachments. Furthermore, PVSio
provides:

• An alternative (and simplified) Emacs interface to the ground evaluator.

• A user-friendly mechanism to define new semantic attachments.

• A stand alone (Emacs-free) interface to the ground evaluator.

• A set of proof rules that safely integrates the ground evaluator to the PVS theorem
prover.

1PVS packages are also known as prelude library extensions.

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Installing PVSio

To install PVSio-2.b, remove any previous version of PVSio and check that PVS 3.1 or higher
is already installed.1 For example, type

$ pvs-dir/pvs -version

where pvs-dir is the absolute path to the PVS root directory.
Get the tarball file PVSio-2.b.tgz from http://research.nianet.org/~munoz/PVSio. If

necessary, create a directory to store PVS packages, e.g., packages. The directory packages

may also be pvs-dir/lib, but note that read and write privileges are required on this di-
rectory during the installation procedure. Move the tarball file to packages and unpack
it:

$ tar xfz PVSio-2.b.tgz

Change to the distribution directory packages/PVSio-2.b and type

$ make PVS_DIR=pvs-dir

Finally, install the package:

$ make install PVS_DIR=pvs-dir

Detailed installation instructions are provided in the distribution file INSTALL.
Before using PVSio, verify that the environment variable PVS_LIBRARY_PATH is set such

that it includes the directory packages. For instance, define PVS_LIBRARY_PATH in the startup
file of the user shell. In bash, add the line

export PVS_LIBRARY_PATH=$PVS_LIBRARY_PATH:packages

to the .bash_profile file. In csh, add the line

setenv PVS_LIBRARY_PATH $PVS_LIBRARY_PATH:packages

to the .cshrc file. Run source on the updated file or restart the login shell.
The first time that PVSio is used in a working context, the package has to be loaded

with the Emacs command M-x load-prelude-library PVSio. Unless the file .pvscontext

is removed from the current context, PVS will automatically load PVSio in further PVS
sessions.

1PVS (http://pvs.csl.sri.com) is a software developed and licensed by SRI International.

5

http://research.nianet.org/~munoz/PVSio
http://pvs.csl.sri.com

6 CHAPTER 2. INSTALLING PVSIO

Things to Remember

• Remove any previous version of PVSio before installing PVSio-2.b, specially if the full
NASA PVS library [1] has been previously installed.

• Check that the environment variable PVS_LIBRARY_PATH is properly defined.

• Make sure that PVS 3.1 or higher is installed.

• Use M-x load-prelude-library PVSio the first time that PVSio is used in a working
context.

Chapter 3

PVSio for the Impatient

Launch PVS in a new working context and load the PVSio package with the Emacs command
M-x load-prelude-library PVSio. Create the file quadratic.pvs as shown in Listing 3.1.
Typecheck the theory quadratic but, for the sake of simplicity, ignore the Type Correctness
Conditions (TCCs) generated by the typechecker.1

3.1 Read, Eval, Print

The PVSio read-eval-print interface to the ground evaluator is available through the Emacs
command M-x pvsio. PVSio redefines the standard PVS interface to the ground evaluator.
In the new PVSio interface, ground PVS expressions are typed directly after the prompt
<PVSio> and they are terminated by a semicolon. The result is printed after the string ==>.
For example:

<PVSio> root(0,3,3,true);

==>

-1

<PVSio> root(1,1,-6,true);

Hit uninterpreted term quadratic.sqrt_ax during evaluation

Not surprisingly, the ground evaluator reports in the latter case that sqrt_ax is an uninter-
preted function symbol that cannot be evaluated. Quit the read-eval-print interface with the
command exit and then quit PVS.

3.2 Writing User-defined Semantic Attachments

In the current context, create the file pvs-attachments:

(defattach quadratic.sqrt_ax(x) (sqrt x))

1The examples in this section are included in the directory examples of the PVSio distribution.

7

8 CHAPTER 3. PVSIO FOR THE IMPATIENT

Listing 3.1: Theory quadratic

quadratic : theory

begin

% Arbitrary, but unknown, real number

Undef : real

% Axiomatic definition of squared root function

sqrt_ax(x:nnreal): {y:nnreal | y*y = x}

% Discriminant of a quadratic formula

discr(a,b,c:real):real=b*b-4*a*c

% Computes the roots of quadratic equation ax^2+bx+c=0

root(a,b,c:real,sign:bool):real =

let d = discr(a,b,c) in

if (a = 0 ∧ b = 0) ∨ d < 0 then Undef

elsif a = 0 then -c/b

elsif sign then

(-b + sqrt_ax(d))/(2*a)

else

(-b - sqrt_ax(d))/(2*a)

endif

end quadratic

The file pvs-attachments is a regular Common Lisp file that includes semantic attachment
definitions. In PVSio, semantic attachments are defined via the macro defattach. In this
case the Common Lisp function sqrt is associated to the uninterpreted PVS function sqrt_ax

in the theory quadratic.

Restart PVS and load the ground evaluator interface:

<PVSio> root(1,1,-6,true);

==>

2.0

<PVSio> root(1,1,-6,false);

==>

-3.0

<PVSio> let x = root(1,1,-6,true) in x*x + x -6;

==>

0.0

3.3. ANIMATING A FUNCTIONAL SPECIFICATION 9

Listing 3.2: Theory quadratic_io

quadratic_io : theory

begin

quio : theory = quadratic{{sqrt_ax := SQRT}}

end quadratic_io

Note that sqrt_ax computes a floating point number rather than a real number. Indeed:

<PVSio> sqrt_ax(2);

==>

1.4142135

<PVSio> sqrt_ax(2)*sqrt_ax(2)=2;

==>

FALSE

This example shows that the Common Lisp code associated to the function sqrt_ax does
not respect its PVS type declaration. Therefore, it would be unsound to enable a ground
evaluation of sqrt_ax, and for that matter of any expression that uses sqrt_ax, in a formal
proof.

Finally, try a few additional evaluations:

<PVSio> root(1,3,1,false);

==>

-2.618034

<PVSio> root(1,1,1,true);

Hit uninterpreted term quadratic.Undef during evaluation

The PVS constant Undef is intentionally left uninterpreted to force an exception when the
function root is undefined.

3.3 Animating a Functional Specification

The simplest way to instrument a functional PVS specification for simulation and testing is
through the predefined PVSio library. Quit PVS, delete or rename the file pvs-attachments,
and restart PVS so that sqrt is no longer associated to sqrt_ax.

Create the file quadratic_io.pvs as shown in Listing 3.2. Theory quadratic_io uses
theory interpretations [5] to substitute the uninterpreted function sqrt_ax in quadratic by
the PVSio function SQRT. The PVS typechecker generates the following unprovable TCC:

OBLIGATION ∀(x: nnreal): SQRT(x)*SQRT(x) = x;

10 CHAPTER 3. PVSIO FOR THE IMPATIENT

Ignore the TCC as the theory quadratic_io will be exclusively used to animate the theory
quadratic and not as part of a formal development. Of course, if the evaluation of an
expression assumes the validity of an unprovable TCC, the ground evaluator may break or
not terminate.

Go to the ground evaluator and evaluate root:

<PVSio> root(1,3,1,false);

==>

-2.618034

More interestingly, PVSio provides input/output capabilities for writing interactive in-
terfaces. For instance, add the following lines to the file quadratic_io.pvs:

roots : void =

println("Computes roots (x+,x-) of ax^2+bx+c=0") &

let a = query_real("Enter a:") in

let b = query_real("Enter b:") in

let c = query_real("Enter c:") in

let (x1,x2) = (root(a,b,c,true),root(a,b,c,false)) in

println("x+ = "+x1+", x- = "+x2)

The type void and the functions println and query_real are, among many others, PVSio
predefined functions. Actually, void is defined as the PVS type bool and println(...) is
the PVS constant true. Sequential statements in PVSio are separated with the operator
&, which is an alternative syntax for conjunctions in PVS. The expression query_real(...)

has the PVS type real. In PVSio, println has the side effect of printing a message in the
standard output and query_real has the side effects of printing a message in the standard
output and reading a real value from the standard input.

Restart the ground evaluator and test the functional specification of root via roots:

<PVSio> roots;

Computes roots (x+,x-) of ax^2+bx+c=0

Enter a:

1.2

Enter b:

4.5

Enter c:

3.8

x+ = -1.284273, x- = -2.4657269

Note that the evaluation of roots does not print any result of the form ==> This is
because PVSio does not print the result of expressions of type void, such as roots. This is
the only operational difference between the types void and bool.

3.4 Stand Alone Evaluations

PVSio provides a stand alone Emacs-free interface to the ground evaluator. The command

3.5. PROVING GROUND PROPERTIES 11

$ packages/PVSio/pvsio quadratic_io

executes the PVSio read-eval-loop with the theory quadractic_io:

+----

| PVSio-2.b (08/12/05)

|

| Enter a PVS ground expression followed by a symbol ’;’ at the <PVSio> prompt.

| Enter a Lisp expression followed by a symbol ’!’ at the <PVSio> prompt.

|

| Enter help! for a list of commands and quit! to exit the evaluator.

|

| *CAVEAT*: evaluation of expressions which depend on unproven TCCs may be

| unsound, and result in the evaluator crashing into lisp, running out of

| stack, or worse. If you crash into lisp, type (restore) to resume.

|

+----

<PVSio>

The command

$ packages/PVSio/pvsio quadratic_io:roots

evaluates the PVS function roots in the theory quadractic_io:

Computes roots (x+,x-) of ax^2+bx+c=0

Enter a:

1

Enter b:

2

Enter c:

1

x+ = -1.0, x- = -1.0

==>

TRUE

3.5 Proving Ground Properties

PVSio safely integrates the ground evaluator to the PVS theorem prover. Indeed, PVSio
provides proof rules eval-expr and eval-formula that use the Common Lisp code extracted
by the ground evaluator to simplify ground expressions appearing in sequent formulas.

Create the file sqrt_newton.pvs as shown in Listing 3.3. The theory sqrt_newton defines
sqrt_approach, which computes an approximation of the square root function using the
Newton method. Upper and lower bounds are defined using sqrt_approx.2 Typechek the

2A formal proof of the general statement ∀ (x:nnreal): sqrt_lb(x) ≤ sqrt(x) < sqrt_ub(x) appears in
the theory sqrt_approx of the NASA PVS reals library [1].

12 CHAPTER 3. PVSIO FOR THE IMPATIENT

Listing 3.3: Theory sqrt_newton

sqrt_newton : theory

begin

% Newton approximation of sqrt

sqrt_approx(a:nnreal,n:nat): recursive posreal =

if n=0 then a+1

else let r=sqrt_approx(a,n-1) in

(1/2)*(r+a/r)

endif

measure n+1

% sqrt upper bound

sqrt_ub(a:nnreal):posreal =

sqrt_approx(a,10)

% sqrt lower bound

sqrt_lb(a:nnreal):nnreal =

a/sqrt_approx(a,10)

sqrt2 : lemma

sqrt_lb(2) < sqrt_ub(2)

sqrt_lb2 : lemma

2/3 ≤ 1/sqrt_lb(2)

foo : lemma

1 = 0

end sqrt_newton

theory sqrt_newton and prove the TCCs.

Go to the lemma sqrt2 and prove the lemma with the proof rule grind. It takes a few
moments. Once the lemma has been discharged retry the lemma, but this time use the proof
rule eval-formula:

sqrt2 :

|-------

{1} sqrt_lb(2) < sqrt_ub(2)

Rule? (eval-formula)

Evaluating formula 1 in the current sequent,

3.5. PROVING GROUND PROPERTIES 13

Q.E.D.

PVS proof rules such as grind and assert perform symbolic simplifications. In contrast,
the PVSio proof rule eval-formula uses the ground evaluator to simplify ground sequent
formulas via the underlying PVS Common Lisp machine.

PVSio also provides a proof rule eval-expr that evaluates a ground expression and equates
the original expression to its ground evaluation. For example, go to the lemma sqrt_lb2 and
start the theorem prover:

sqrt_lb2 :

|-------

{1} 2 / 3 ≤ 1 / sqrt_lb(2)

Rule? (eval-expr "sqrt_lb(2)")

Evaluating expression sqrt_lb(2) in the current sequent,

this simplifies to:

sqrt_lb2 :

{-1} sqrt_lb(2) =

15111443415447958899296785250545297110329863532332845869781142346856917686...

...

/

10685404112580054249577309962027702517530617008867600505092775584086034866...

...

|-------

[1] 2 / 3 ≤ 1 / sqrt_lb(2)

The goal is discharged with (assert).
Unless the option :safe? is set to nil, the proof rule eval-expr refuses to evaluate an

expression that generates TCCs:

Rule? (eval-expr "1/sqrt_lb(2)")

Typechecking "1/sqrt_lb(2)" produced TCCs:

subtype TCC for sqrt_lb(2): sqrt_lb(2) /= 0

Use option :safe? nil if TCCs are provable.

No change on: (eval-expr "1/sqrt_lb(2)")

The proof rule eval-expr disables ground evaluation of expressions that depend on se-
mantic attachments. This way, potential soundness problems due to side-effects occurring
in semantic attachments are avoided.

For example, assume that a malicious user tries to prove foo by evaluating an expression
such as RANDOM /= RANDOM. RANDOM is a predefined PVSio function that produces a pseudo-
random number in the interval [0, 1] each time that the function is called. It is implemented

14 CHAPTER 3. PVSIO FOR THE IMPATIENT

as a semantic attachment via the the Common Lisp function random. However, the proof
rules eval-expr and eval-formula refuse to evaluate ground expressions that depend on
RANDOM:

foo :

|-------

{1} 1 = 0

Rule? (eval-expr "RANDOM /= RANDOM")

Function stdmath.RANDOM is defined as a semantic attachment.

It cannot be evaluated in a formal proof.

No change on: (eval-expr "RANDOM /= RANDOM")

On the other hand, the proof rule eval evaluates arbitrary ground expressions; even
if they are defined using semantic attachments. However, in contrast to eval-expr and
eval-formula, eval does not actually modify the proof context. For this reason, it is logically
safe to evaluate user defined semantic attachments using eval:

Rule? (eval "RANDOM /= RANDOM")

RANDOM /= RANDOM = TRUE

No change on: (eval "RANDOM /= RANDOM")

foo :

|-------

{1} 1 = 0

Rule? (eval "RANDOM")

RANDOM = 0.96723104

No change on: (eval "RANDOM")

foo :

|-------

{1} 1 = 0

Rule? (eval "RANDOM")

RANDOM = 0.93110865

No change on: (eval "RANDOM")

Chapter 4

Read-Eval-Print Interface

PVSio provides an alternative read-eval-print interface to the ground evaluator via the Emacs
command M-x pvsio. It displays the following message in the *pvs* buffer:

+----

| PVSio-2.b (08/12/05)

|

| Enter a PVS ground expression followed by a symbol ’;’ at the <PVSio> prompt.

| Enter a Lisp expression followed by a symbol ’!’ at the <PVSio> prompt.

|

| Enter help! for a list of commands and quit! to exit the evaluator.

|

| *CAVEAT*: evaluation of expressions which depend on unproven TCCs may be

| unsound, and result in the evaluator crashing into lisp, running out of

| stack, or worse. If you crash into lisp, type (restore) to resume.

|

+----

<PVSio>

The standard PVS interface to the ground evaluator is still available with the Emacs com-
mand M-x pvs-ground-evaluator. The main differences between both interfaces are:

• The PVSio interface is quiet and compilation messages are always turned off.

• In the PVSio interface, ground expressions are typed directly after the prompt and
they are terminated by a semicolon ’;’. In the standard PVS interface, expressions are
surrounded by double quotes and, therefore, string values have to be escaped.

• The PVSio interface also doubles as a Common Lisp evaluator: Lisp expressions are
typed directly after the prompt and they are terminated by an exclamation mark ’ !’.
This feature is specially useful when debugging semantic attachments.

The examples in this document are illustrated using the PVSio interface. However, both
interfaces provides roughly the same functionality with respect to the predefined PVSio
library of semantic attachments.

15

16 CHAPTER 4. READ-EVAL-PRINT INTERFACE

4.1 PVSio Special Commands

The following commands can be followed by either a ’;’ or a ’ !’.

• help: Prints a help message.

• quit: Exits the evaluator with confirmation.

• exit: Exits the evaluator without confirmation.

• timing: Prints timing information for each evaluation.

• notiming: Turns off printing of timing information.

• reload_pvsio: Restarts PVSio, for example, after the ground evaluator has been ab-
normally interrupted.

• load_pvs_attachments: Forces a reload of semantic attachments from the current and
imported contexts.

• pvsio_version: Shows the current version of PVSio.

• list_attachments: Lists the semantic attachments loaded in the current context.

Help for semantic attachments are available through the following commands:

• (help_pvs_attachment attachment)! and help_pvs_attachment(attachment); display
help for attachment.

• (help_pvs_theory_attachments theory)! and help_pvs_theory_attachments(theory)

display help for attachments in theory.

4.2 PVSio Emacs Commands

PVSio provides the following commands to be used in the PVS Emacs interface. They are
the Emacs counterpart of some of the above special commands.

• M-x reload-pvsio: Restarts PVSio.

• M-x load-pvs-attachments: Forces a reload of semantic attachments.

• M-x pvsio-version: Shows the current version of PVSio.

• M-x list-attachments: Lists the semantic attachments loaded in the current context.

• M-x help-pvs-attachment (C-c C-h a): Displays help for a given semantic attachment.

• M-x help-pvs-theory-attachments (C-c C-h t): Displays help for semantic attach-
ments of a given theory.

4.2. PVSIO EMACS COMMANDS 17

Things to Remember

• <PVSio> expr; to evaluate PVS expression expr.

• <PVSio> expr! to evaluate Common Lisp expression expr.

• <PVSio> help! to get a help message.

• <PVSio> quit! to exit the ground evaluator.

• M-x list-attachments to list all loaded attachments.

• C-c C-h a to display help for a given semantic attachment.

• C-c C-h t to display help for semantic attachments in a given theory.

• reload_pvsio! to restart PVSio if necessary.

18 CHAPTER 4. READ-EVAL-PRINT INTERFACE

Chapter 5

Semantic Attachments

Semantic attachments in PVSio should be written in a file pvs-attachments in the cur-
rent context or in the file ~user/.pvs-attachments. PVSio automatically loads these two
files at startup. If needed, the Emacs command M-x pvs-load-attachments reloads the file
pvs-attachments in the current context. This may be useful if the file has been modified
during the PVS session.

The files pvs-attachments and .pvs-attachments are Common Lisp files. They may
contain arbitrary Lisp forms. Semantic attachment definitions have the form:

(defattach theory.attachment (parameters)

[[docstr]]
body)

The macro attachments can be used to define multiple semantic attachments for the same
theory:

(attachments theory

(defattach attachment (parameters)

[[docstr]]
body)

...

)

The macro defattach attaches the Lisp code body to attachment with parameters parameters
in theory theory. In contrast to PVS, Common Lisp is by default case insensitive. Therefore,
PVS identifiers that contain uppercase letters have to be surrounded by bars in Common
Lisp. The list of names in parameters is empty when attachment is the semantic attachment
of a PVS constant. The documentation string docstr is optional; it is used to produce
the help messages displayed by the Emacs commands M-x help-pvs-attachment (C-c C-h

a) and M-x help-pvs-theory-attachments (C-c C-h t). The body is a regular Common Lisp
expression. For instance, the semantic attachments of the constant PI and the function SIN

in the PVSio theory stdmath are defined:

19

20 CHAPTER 5. SEMANTIC ATTACHMENTS

(attachments stdmath

(defattach |PI| ()

"Number Pi"

pi)

(defattach |SIN| (x)

"Sine of X"

(sin x))

)

Semantic attachment definitions may call other semantic attachments, including them-
selves in recursive calls. The function name of a semantic attachment theory.attachment is
pvsio_theory_attachment_n, where n is the number of parameters in the attachment. For
example, the attachment definition of fibonacci(n,f1,f2:nat):nat in a theory myfibo could
be written:

(defattach myfibo.fibonacci (n f1 f2)

(if (= n 0) f1

(pvsio_myfibo_fibonacci_3 (- n 1) f2 (+ f1 f2))))

5.1 Overloading

Overloading of semantic attachments is partially supported in PVSio. That is, semantic
attachments with the same name can be defined if they are in different theories or if they are
in the same theory but they have different number of parameters. On the other hand, the
ground evaluator fully supports PVS overloading. For example, the PVSio theory stdstr

contains the following declarations of two functions tostr that convert, respectively, real
numbers to string and Boolean values to string:

tostr(r:real): string = real2str(r) [Function]

tostr(b:bool): string = bool2str(b) [Function]

The functions real2str and bool2str are appropriately defined via semantic attachments.
Thus,

<PVSio> tostr(SQRT(2));

==>

"1.4142135"

<PVSio> tostr(exists (x:subrange(1,10)): x=5);

==>

"TRUE"

5.2. FROM PVS TO COMMON LISP AND BACK AGAIN 21

5.2 From PVS to Common Lisp and Back Again

All data structures in PVS are defined as classes in the Common Lisp Object System
(CLOS) [8]. However, the formal parameters in parameters and the result returned by
body are type-free Common Lisp representations of PVS CLOS data structures. Basic PVS
types such as real, bool, and string are the built-in Common Lisp types rationals, Booleans,
and strings, respectively. PVS enumerate types are represented by integers, PVS records are
represented by arrays, and PVS functional closures are represented by Common Lisp lambda

expressions. Since access to complex PVS data structures may be difficult in the type-free
Common Lisp representation, it is highly recommended to use only basic types in the domain
and range of semantic attachments.

If absolutely necessary, back and forth translations between PVS CLOS and type-free
Common Lisp representations are possible through the predefined Common Lisp functions
pvs2cl and cl2pvs:

• (pvs2cl clos-expr): Returns the type-free Common Lisp representation of the PVS
CLOS expression clos-expr.

• (cl2pvs lisp-expr clos-type): Returns the PVS CLOS representation of the type-
free Common Lisp expression lisp-expr of PVS CLOS type clos-type.

The macro defattach provides a hidden parameter *the-pvs-type* that is instantiated
with the string representation of the PVS type of the attachment. For example, the attach-
ment typeof, in the PVSio theory stdpvs, that returns the string value of the PVS type of
its argument is defined as follows:

(defattach typeof(e)

"Returns the string value of the type of E"

(let* ((the-type (pc-parse *the-pvs-type* ’type-expr))

(domain (domain the-type)))

(format nil "~a" (or (print-type domain) domain))))

Thus,

<PVSio> typeof(SQRT(2));

==>

"nnreal"

<PVSio> typeof(∃(x:subrange(1,10)):x=5);
==>

"boolean"

Things to Remember

• Semantic attachments are defined in the file pvs-attachments in the current context
or in the file ~user/.pvs-attachments.

22 CHAPTER 5. SEMANTIC ATTACHMENTS

• Semantic attachment definitions have the form:

(defattach theory.attachment (parameters) [[docstr]] body)

• Semantic attachment definitions for the same theory can be grouped using the macro
attachments:

(attachments theory (defattach attachment ...) ...)

• Semantic attachments with the same name can be defined if they are in different
theories or if they are in the same theory but they have different number of parameters

• Parameters of semantic attachments and the returned values should be basic objects
such as numbers, Booleans, and strings.

Chapter 6

Library

PVSio predefined theories are implicit imported in a working context where PVSio has been
loaded. The PVS library consists of the following theories:

• stdlang: Basic definitions.

• stdstr: String operations.

• stdio: Input/output operations.

• stdfmap: File iterations.

• stdmath: Floating point arithmetic.

• stdpvs: PVS parsing and printing.

• stdindent: Pretty printing via indentations.

• stdtokenizer: Lexing and parsing via tokenizers.

• stdexc: Definition of exceptions.

• stdcatch: Exception handling.

• stdprog: Imperative programming features.

• stdglobal: Global variables.

• stdpvsio: PVSio interface.

• stdsys: System utilities.

The logical structure of the the library gives a good overview of the functionality provided
by PVSio. However, it should be noted that for technical reasons some functions are defined
in unexpected theories.

23

24 CHAPTER 6. LIBRARY

6.1 Statements

The type void is intended to be used as the type of procedures and statements, i.e., functions
and expressions with side effects. This usage is a convention rather than a policy enforced by
the typechecker. Indeed, void is just an alias to bool. Constants skip and fail are empty
statements that represent success (true) and failure (false), respectively.

void : TYPE = bool [Type]

skip : void = true [Constant]

fail : void = false [Constant]

6.2 Sequence and Bounded Loop

The type encoding of statements enables the use of the PVS operator & (logical and) as
separator of sequential statements and the universal quantifier forall as the bounded loop
operator. For instance, the statement forall (i:subrange(n,m)):s iterates the statement s
for i varying sequentially from n to m.

Statements and expressions can be composed using the operator prog:

prog(s:void,t:T): T = t [Function]

For instance, prog[T](s,expr) evaluates statement s and then returns expression expr of
type T. If T is not provided, it will be inferred by the type checker.

6.3 Conditionals

In addition to standard PVS conditional operators, i.e., if, cases, cond, table, PVSio pro-
vides:

try(s1:void,s2:void) : MACRO void = s1 or s2 [Macro]

try(s:void) : MACRO void = try(s,skip) [Macro]

ifthen(b:bool,s:void) : MACRO void = if b then s else skip endif [Macro]

ifelse(b:bool,s:void) : MACRO void = if b then skip else s endif [Macro]

Note the use of MACRO in these definitions. In the presence of side effects, this is necessary
to simulate lazy evaluation of parameters.

6.4. UNBOUNDED LOOPS 25

6.4 Unbounded Loops

6.5 Exceptions

6.6 Mutable and Global Variables

6.7 Strings

PVSio complements the basic definition of the type string in the PVS prelude library with
constants, operators, and functions on string values. The theory stdstr defines the following
self-explained string constants:

emptystr : string [Constant]

space : string [Constant]

newline : string [Constant]

tab : string [Constant]

doublequote : string [Constant]

singlequote : string [Constant]

backquote : string [Constant]

The table of standard Common Lisp symbols is printed by the procedure chartable. Symbol
codes are converted to string values with the function charcode.

chartable : void [Function]

charcode(n:nat) : string [Function]

For example:

<PVSio> chartable;

32 : 33 : ! 34 : " 35 : # 36 : $ 37 : % 38 : & 39 : ’ 40 : (41 :)

42 : * 43 : + 44 : , 45 : - 46 : . 47 : / 48 : 0 49 : 1 50 : 2 51 : 3

52 : 4 53 : 5 54 : 6 55 : 7 56 : 8 57 : 9 58 : : 59 : ; 60 : < 61 : =

62 : > 63 : ? 64 : @ 65 : A 66 : B 67 : C 68 : D 69 : E 70 : F 71 : G

72 : H 73 : I 74 : J 75 : K 76 : L 77 : M 78 : N 79 : O 80 : P 81 : Q

82 : R 83 : S 84 : T 85 : U 86 : V 87 : W 88 : X 89 : Y 90 : Z 91 : [

92 : \ 93 :] 94 : ^ 95 : _ 96 : ‘ 97 : a 98 : b 99 : c 100 : d 101 : e

102 : f 103 : g 104 : h 105 : i 106 : j 107 : k 108 : l 109 : m 110 : n 111 : o

112 : p 113 : q 114 : r 115 : s 116 : t 117 : u 118 : v 119 : w 120 : x 121 : y

122 : z 123 : { 124 : | 125 : } 126 : ~

==>

TRUE

<PVSio> charcode(35);

==>

"#"

PVS does not support decimal notation of real numbers. PVSio alleviates this limitation
with the function str2real. It takes the string representation of a number in decimal notation

26 CHAPTER 6. LIBRARY

and returns its value as a rational number. The function str2int returns the integer value
represented by a string. These functions raise exceptions if the string does not represent a
numerical value of the given type. The functions number? and int? check if a given string
represents a numerical value and an integer number, respectively. The function tostr returns
the string representation of a basic value. The operator + concatenates two strings. Functions
tostr and + are overloaded for basic PVS types, i.e., real, bool, and string. Indeed, the
operator + behaves pretty much as + in Java.

str2real(s:string) : rat [Function]

str2int(s:string) : int [Function]

number?(s:string) : bool [Function]

int?(s:string) : bool [Function]

tostr(x) : string [Function]

+(x,y) : string [Function]

For example:

<PVSio> str2real("1343.45");

==>

26869/20

<PVSio> int?("1345.45");

==>

FALSE

<PVSio> tostr(PI*PI);

==>

"9.869604"

<PVSio> (1+1)+"1";

==>

"21"

<PVSio> true+tab+"/="+newline+tab+false;

==>

"TRUE /=

FALSE"

String search, substrings and string comparison

The function strfind returns the index of leftmost occurrence of s1 in s2, starting from 0,
or -1 if s1 does not occur in s2. The function substr extracts the substring of s from i to
j if i<=j, from j to i if j<=i, or emptystr if indices are out of range. The function strcmp

returns -1 if s1 < s2, 1 if s1 > s2, 0 if strings are equal. Comparison is case sensitive when
the parameter sensitive is TRUE.

6.7. STRINGS 27

strfind(s1,s2:string) : int [Function]

substr(s:string,i,j:nat) : string [Function]

strcmp(s1,s2:string,sensitive:bool) : int [Function]

strcmp(s1,s2:string): int = strcmp(s1,s2,true) [Function]

Upcase, downcase, capitalize

upcase(s:string) : string [Function]

downcase(s:string) : string [Function]

capitalize(s:string) : string [Function]

Trimming

The functions strtrim, strtrim_left, and strtrim_right trim a string s2 with respect to
characters in string s1. The functions trim, trim_left, and trim_right trim string s with
respect to newline, space, and tab.

strtrim(s1,s2:string) : string [Function]

strtrim_left(s1,s2:string) : string [Function]

strtrim_right(s1,s2:string) : string [Function]

trim(s:string) : string [Function]

trim_left(s:string) : string [Function]

trim_right(s:string) : string [Function]

Paths and file names

filename(s:string) : string [Function]

directory(s:string) : string [Function]

Formatting and padding

Function pad concatenates n times a given string s, function spaces returns a string with
n spaces, functions center, flushleft, and flushright justify a string with respect to a
number of columns, and function format mimics in PVSio the behavior of the Common Lisp
function format.

pad(n:nat,s:string) : string

spaces(n:nat) : string

center(col:nat,s:string) : string

flushleft(col:nat,s:string) : string

flushright(col:nat,s:string) : string

format(s:string,x) : string

28 CHAPTER 6. LIBRARY

More examples

<PVSio> strcmp("hola","HOLA",false);

==>

0

<PVSio> strcmp("hola","HOLA",true);

==>

1

<PVSio> strtrim("01","0001ABCD110");

==>

"ABCD"

<PVSio> trim_right("Hola ");

==>

"Hola"

<PVSio> pad(50,"-")+newline+center(50,"center")+newline+flushleft(50,"left")+

newline+flushright(50,"right");

==>

"--

center

left

right"

<PVSio> format("~%~6a:~5d~%~6a:~5d~%~6a:~5d~%",("day",1,"month",1,"year",2000));

==>

"

day : 1

month : 1

year : 2000

"

6.8 Input/Output

(see lib/stdio.pvs and [3])

6.9 Floating Point Arithmetic

(see lib/stdmath.pvs and [3])

6.10. PRETTY PRINTING 29

6.10 Pretty Printing

(see lib/stdindent.pvs and [3])

6.11 Parsing

(see lib/stdtokenizer.pvs and [3])

6.12 PVS Lexer and Parser

(see lib/stdpvs.pvs and [3])

30 CHAPTER 6. LIBRARY

Chapter 7

Stand Alone Interface

PVSio provides the Unix command lib/pvsio for stand alone (Emacs-free) evaluations:

pvsio [-options ...] [<file>@]<th>[:<main>] [Command]

where options include:

• -e|-expr <expr>: Evaluates <expr> after startup.

• -h|-help: Prints a help message.

• -p|-packages <p1>,..,<pn>: Loads packages <p1>. . . <pn>.

• -tccs: Generates TCCs.

• -timing: Prints timing information for each evaluation.

• -verbose: Prints typechecking information.

• -version: Prints PVSio version.

The command loads theory <th>, from file <file>.pvs, evaluates the expression <main> in
PVSio, and exits. If <file> is not provided, <th> is assumed to be the name of the file too.
If <main> is not provided, pvsio starts the PVSio read-eval-loop with the theory <th>.

For instance, given this PVS theory hello in Listing 7.1, we have

$ pvsio hello:main

Hello, World!

There is nothing special about the name main, it can be any PVS ground expression, e.g.,

$ pvsio hello:’you(\"Tom\")’

Hello, Tom!

Or even,

$ pvsio hello:’1+2+3+4+5+6+7+8+9’

==>

45

Note that string values have to be escaped. Furthermore, to prevent Unix for preprocessing
the command line, if may be necessary to surround the PVS expression with single quotes.

31

32 CHAPTER 7. STAND ALONE INTERFACE

Listing 7.1: Theory hello

hello : THEORY

BEGIN

main : void =

println("Hello, World!");

you(name:string):void =

println("Hello, "+name+"!");

END hello

Chapter 8

Proof Rules

PVSio uses a conservative approach to integrate the ground evaluator to the theorem prover.
It considers that all user-defined semantic attachments are unsafe and, consequently, disables
their ground evaluation in the theorem prover.

8.1 eval-formula

(eval-formula &optional (fnum 1) safe?) [Strategy]

Evaluates the formula fnum in Common Lisp and adds the result to the antecedent of the
current goal. If safe? is t and fnum generates TCCs, the expression is not evaluated.
The strategy is safe in the sense that user-defined semantic attachments are not evaluated.
However, the strategy may fail in the presence of unproven TCCs.

8.2 eval-expr

(eval-expr expr &optional (safe? t) (auto? t)) [Strategy]

Adds the antecedent expr=eval to the current goal, where eval is the Common Lisp evaluation
of expr. If safe? is t and expr generates TCCs, the expression is not evaluated. Otherwise,
TCCs are added as subgoals and the expression is evaluated. If auto? is t, TCCs are ground
evaluated. The strategy is safe in the sense that user-defined semantic attachments are not
evaluated. However, the strategy may fail or loop in the presence of unproven TCCs.

8.3 eval

(eval expr &optional (safe? t)) [Strategy]

Evaluates expression expr. If safe? is t and expr generates TCCs, the expression is not
evaluated.

33

PVSio Index

PI, 19, 20, 26

RANDOM, 13, 14

SIN, 19, 20

SQRT, 9, 20, 21

attachments, 19, 20, 22

backquote, 25

capitalize, 27

center, 27, 28

charcode, 25

chartable, 25

defattach, 7, 19-22

directory, 27

doublequote, 25

downcase, 27

emptystr, 25

eval, 1, 14, 33

eval-expr, 1, 11, 13, 14, 33

eval-formula, 1, 11-14, 33

fail, 24

filename, 27

flushleft, 27, 28

flushright, 27, 28

help-pvs-attachment, 16, 19

help-pvs-theory-attachments, 16, 19

help_pvs_attachment, 16

help_pvs_theory_attachments, 16

ifelse, 24

ifthen, 24

list-attachments, 16, 17

list_attachments, 16

load-pvs-attachments, 16

load_pvs_attachments, 16

newline, 25, 26, 28

pad, 27, 28

println, 10, 32

prog, 24

pvs-attachments, 19, 21

pvsio, 11, 31

pvsio-version, 16

pvsio_version, 16

query_real, 10

reload-pvsio, 16

reload_pvsio, 16, 17

singlequote, 25

skip, 24

space, 25

spaces, 27

stdcatch, 23

stdexc, 23

stdfmap, 23

stdglobal, 23

stdindent, 23

stdio, 23

stdlang, 23

stdmath, 14, 19, 20, 23

stdprog, 23

stdpvs, 21, 23

stdpvsio, 23

stdstr, 20, 23, 25

stdsys, 23

stdtokenizer, 23

str2int, 26

str2real, 25, 26

strcmp, 26-28

strfind, 26, 27

strtrim, 27, 28

strtrim_left, 27

strtrim_right, 27

substr, 26, 27

tab, 25, 26

tostr, 20, 26

trim, 27

trim_left, 27

trim_right, 27, 28

try, 24

upcase, 27

void, 10, 24, 25, 32

34

BIBLIOGRAPHY 35

Bibliography

[1] Formal Methods Groups at NASA Langley and National Institute of Aerospace.
NASA langley PVS libraries. Available at http://shemesh.larc.nasa.gov/fm/ftp/larc/
PVS2-library/pvslib.html.

[2] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert. Evaluating, testing,
and animating PVS specifications. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, CA, March 2001. Available at http://www.csl.sri.com/

users/rushby/abstracts/attachments.

[3] C. Muñoz. Rapid prototyping in pvs. Report NIA Report No. 2003-03 and NASA/CR-
2003-212418, NIA-NASA Langley, National Institute of Aerospace, Hampton, VA, May
2003.

[4] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak
Kapur, editor, 11th International Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, June 1992.
Springer-Verlag.

[5] S. Owre and N. Shankar. Theory interpretations in pvs. Technical Report SRI-CSL-01-01,
Computer Science Laboratory, SRI International, Menlo Park, CA, April 2001.

[6] Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report SRI-
CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA, August
1997.

[7] N. Shankar. Efficiently executing PVS. Project report, Computer Science Laboratory,
SRI International, Menlo Park, CA, November 1999. Available at http://www.csl.sri.

com/shankar/PVSeval.ps.gz.

[8] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS2-library/pvslib.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS2-library/pvslib.html
http://www.csl.sri.com/users/rushby/abstracts/attachments
http://www.csl.sri.com/users/rushby/abstracts/attachments
http://www.csl.sri.com/shankar/PVSeval.ps.gz
http://www.csl.sri.com/shankar/PVSeval.ps.gz

	Contents
	Introduction
	Installing PVSio
	PVSio for the Impatient
	Read, Eval, Print
	Writing User-defined Semantic Attachments
	Animating a Functional Specification
	Stand Alone Evaluations
	Proving Ground Properties

	Read-Eval-Print Interface
	PVSio Special Commands
	PVSio Emacs Commands

	Semantic Attachments
	Overloading
	From PVS to Common Lisp and Back Again

	Library
	Statements
	Sequence and Bounded Loop
	Conditionals
	Unbounded Loops
	Exceptions
	Mutable and Global Variables
	Strings
	Input/Output
	Floating Point Arithmetic
	Pretty Printing
	Parsing
	PVS Lexer and Parser

	Stand Alone Interface
	Proof Rules
	eval-formula
	eval-expr
	eval
	PVSio Index
	Bibliography

