
PVS Release Notes

Sam Owre <owre@csl.sri.com>
SRI International
December 15, 2005

1

The PVS release notes are given here, for each version, going back to version 3.0.
You can always download the latest version of PVS from
http://pvs.csl.sri.com/download.shtml.
Note that the release notes are now written in texinfo, and are thus available in Emacs
info, HTML, Postscript, and PDF forms. M-x pvs-release-notes brings up the info files
while in PVS. The others are available in the doc/release-notes subdirectory of the PVS
distribution.

http://pvs.csl.sri.com/download.shtml

2 PVS Release Notes

PVS 4.0 Release Notes 3

PVS 4.0 Release Notes

PVS 4.0 is available at http://pvs.csl.sri.com/download.shtml.
Release notes for PVS version 4.0.1 The major difference from earlier versions of PVS is
that this release is open source, under the GPL license. In addition, there is now a PVS
Wiki page.

Installation Notes

Installation of binaries is the same as before; the only difference is that only one file needs to
be downloaded. This leads to slightly more overhead when downloading for multiple plat-
forms, but simplifies the overall process. Simply create a directory, untar the downloaded
file(s) there, and run bin/relocate.
If you have received patches from SRI that you have put into your ~/.pvs.lisp file, they
should be (re)moved. If you anticipate wanting to try the newer and older versions together,
you can do this by using #-pvs4.0 in front of forms in your patches. This is a directive to
the Lisp reader, and causes the following s-expression to be ignored unless it is an earlier
version of PVS.

New Features

Open Source

PVS is now open source, under the under the GPL license. It currently builds with Allegro
and CMU Common Lisps, and we are working on porting it to SBCL. Feel free to join in if
your favorite Lisp or platform is not yet supported. See the PVS Wiki page for details.

Record and Tuple Type Extensions

Record and tuple types may now be extended using the WITH keyword. Thus, one may
create colored points and moving points from simple points as follows.

point: TYPE = [# x, y: real #]
colored_point: TYPE = point WITH [# color: Color #]
moving_point: TYPE = point WITH [# vx, vy: real #]

Similarly, tuples may be extended:
R3: TYPE = [real, real, real]
R5: TYPE = R3 WITH [real, real]

For record types, it is an error to extend with new field names that match any field names
in the base record type. The extensions may not be dependent on the base type, though
they may introduce dependencies within themselves.

dep_bad: TYPE = point WITH [# z: {r: real | x*x + y*y < 1} #]
dep_ok: TYPE = point WITH [# a: int, b: below(a) #]

Note that the extension is a type expression, and may appear anywhere that a type is
allowed.

1 These started as the release notes for PVS 3.3, but this was changed to a major release when we made PVS
open source.

http://pvs.csl.sri.com/download.shtml
http:penalty z@ //wwwpenalty z@ .gnupenalty z@ .orgpenalty z@ /copyleft/gpl.html
http:penalty z@ //pvs-wikipenalty z@ .csl.sri.com
http:penalty z@ //pvs-wikipenalty z@ .csl.sri.com
http:penalty z@ //wwwpenalty z@ .gnupenalty z@ .orgpenalty z@ /copyleft/gpl.html
http:penalty z@ //pvs-wikipenalty z@ .csl.sri.com

4 PVS Release Notes

Structural Subtypes

PVS now has support for structural subtyping for record and tuple types. A record type S
is a structural subtype of record type R if every field of R occurs in S, and similarly, a tuple
type T is a structural subtype of a tuple type forming a prefix of T. Section [Record and
Tuple Type Extensions], page 3 gives examples, as colored_point is a structural subtype
of point, and R5 is a structural subtype of R3. Structural subtypes are akin to the class
hierarchy of object-oriented systems, where the fields of a record can be viewed as the slots
of a class instance. The PVS equivalent of setting a slot value is the override expression
(sometimes called update), and this has been modified to work with structural subtypes,
allowing the equivalent of generic methods to be defined. Here is an example.

points: THEORY
BEGIN
point: TYPE+ = [# x, y: real #]
END points

genpoints[(IMPORTING points) gpoint: TYPE <: point]: THEORY
BEGIN
move(p: gpoint)(dx, dy: real): gpoint =
p WITH [‘x := p‘x + dx, ‘y := p‘y + dy]

END genpoints

colored_points: THEORY
BEGIN
IMPORTING points
Color: TYPE = {red, green, blue}
colored_point: TYPE = point WITH [# color: Color #]
IMPORTING genpoints[colored_point]
p: colored_point
move0: LEMMA move(p)(0, 0) = p
END colored_points

The declaration for gpoint uses the structural subtype operator <:. This is analogous to
the FROM keyword, which introduces a (predicate) subtype. This example also serves to
explain why we chose to separate structural and predicate subtyping. If they were treated
uniformly, then gpoint could be instantiated with the unit disk; but in that case the move
operator would not necessarily return a gpoint. The TCC could not be generated for the
move declaration, but would have to be generated when the move was referenced. This
both complicates typechecking, and makes TCCs and error messages more inscrutable. If
both are desired, simply include a structural subtype followed by a predicate subtype, for
example:

genpoints[(IMPORTING points) gpoint: TYPE <: point,
spoint: TYPE FROM gpoint]: THEORY

Now move may be applied to gpoints, but if applied to a spoint an unprovable TCC will
result.

PVS 4.0 Release Notes 5

Structural subtypes are a work in progress. In particular, structural subtyping could be
extended to function and datatypes. And to have real object-oriented PVS, we must be
able to support a form of method invocation.

Empty and Singleton Record and Tuple Types

Empty and singleton record and tuple types are now allowed in PVS. Thus the following
are valid declarations:

Tup0: TYPE = []
Tup1: TYPE = [int]
Rec0: TYPE = [# #]

Note that the space is important in the empty tuple type, as otherwise it is taken to be an
operator (the box operator).

PVSio

César Muñoz has kindly provided lisp code for PVSio, which has been fully
incorporated into PVS. Thus for PVS 4.0 there is no need to download the pack-
age. See the doc/PVSio-2.d.pdf manual for details, and the PVSio web page
http://research.nianet.org/~munoz/PVSio/ for updates.

Random Testing

We have developed a capability for random test generation in PVS, based, in part, on work
done in Haskell and Isabelle. Random tests may be generated for universally quantified
formulas in the ground evaluator or in the prover. In each case, the purpose is to try and
find a counter example to the given formula, by evaluating a number of instances until one
of them returns FALSE. The falsifying instance is then displayed.
This is a good way to test a specification before attempting a proof. Unlike model checking,
it is inherently incomplete; on the other hand, there is no requirement for all types to be
finite, only that all involved types and constants have interpretations.
For the prover, random testing is invoked with the random-test rule:

(random-test &optional (fnum *) (count 10) (size 100)
(dtsize 10) all? verbose? instance
(subtype-gen-bound 1000))

In the ground evaluator, we added the test command:
(test expr &optional (count 10) (size 100) (dtsize 10)

all? verbose? instance)

Note one important difference: the optional arguments in the test command are not key-
words. To set the all? flag you would need to invoke test as

(test "foo" 10 100 10 t)

In general, random testing is most easily used in the prover. Note that you can get an
arbitrary expression into the sequent by using the case command.
The count argument controls how many random tests to try. The size and dtsize control
the possible ranges of random values, as described below. Normally the tests stop when a
counter example is found; setting the all? flag to t causes further tests to be run until count
is reached. The verbose? flag indicates that all random test values should be displayed.

http://research.nianet.org/~munoz/PVSio/

6 PVS Release Notes

This is often useful to understand why a given test seems to always be true. The instance
argument allows formals and uninterpreted types and constants to be given as a theory
instance with actuals and mappings. The current theory may also be instantiated this way.
For example, th[int, 0]{{T := bool, c := true}} may be a theory instance, providing
actuals and mappings for the terms involved in the given formula. The subtype-gen-
bound is used to control how many random values to generate in attempting to satisfy a
subtype predicate, as described below.

In the prover, the universal formula is generated from the formulas specified by the fnum ar-
gument, first creating an implication from the conjunction of antecedents to the disjunction
of consequents. Any Skolem constants are then universally quantified and the result passed
to the random tester. This is useful for checking if the given sequent is worth proving; if it
comes back with a counter example, then it may not be worth trying to prove. Of course,
it may just be that a lemma is needed, or relevant formulas were hidden, and that it isn’t
a real counter example.

The random values are generated per type. For numeric types, the builtin Lisp random
function is used:

• nat uses random(0..size)

• int uses random(-size..size)

• rat creates two random ints, the second nonzero, and returns the quotient

• real and above just use rat values

All other subtypes create a random value for the supertype, and then check if it satisfies
the subtype predicate. It stops after subtype-gen-bound attempts. Higher-order subtypes
such as surjective? are not currently supported. Function types generate a lazy function,
so that, e.g.,

FORALL (f: [int -> int], x, y, z: int):
f(x) + f(f(y)) > f(f(f(z)))

creates a function that memoizes its values. Other types (e.g., record and tuple types) are
built up recursively from their component types.

Datatypes are controlled by dtsize. For example, with size and dtsize set to their
defaults (100 and 10, respectively), a variable of type list[int] will generate lists of
length between 0 and 10, with integer values between -100 and 100.

More details may be found in the paper Random Testing in PVS, which was presented at
AFM 2006.

Yices

New prover commands are available that invoke the Yices SMT solver. See http://yices
.csl.sri.com for details on Yices and its capabilities. You must download Yices from
there and include it in your PATH, as it is not included with PVS. You will get a warning on
starting PVS if Yices is not found in your path, but this can safely be ignored if you will
not be using Yices.

The yices rule is an endgame solver; if it does not prove (the specified formulas of) the
sequent, it acts as a skip. In addition to the primitive yices rule, the strategies yices-
with-rewrites and ygrind have been added. Use help (e.g., (help ygrind)) for details.

http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf
http://fm.csl.sri.com/AFM06/
http:penalty z@ //yicespenalty z@ .cslpenalty z@ .sripenalty z@ .com
http:penalty z@ //yicespenalty z@ .cslpenalty z@ .sripenalty z@ .com

PVS 4.0 Release Notes 7

Recursive Judgements TCCs

Judgements on recursive functions often lead to difficult proofs, as one generally has to
prove the resulting obligation using tedious induction. For example, here is a definition of
append on lists of integer, and a judgement that it is closed on lists of natural numbers
(note that this example is artificial; append is defined polymorphically in the prelude):

append_int(l1, l2: list[int]): RECURSIVE list[int] =
CASES l1 OF
null: l2,
cons(x, y): cons(x, append_int(y, l2))

ENDCASES
MEASURE length(l1)

append_nat: JUDGEMENT append_int(a, b: list[nat]) HAS_TYPE list[nat]

This yields the TCC
append_nat: OBLIGATION
FORALL (a, b: list[nat]):
every[int]({i: int | i >= 0})(append_int(a, b));

Which is difficult to prove automatically (or even manually).
By adding the keyword RECURSIVE to the judgement, the TCCs are generated by
• creating the predicate on the top-level call to the function, in this case every({i: int

| i >= 0})(append_int(a, b)).
• substituting the variables into the body of the recursive definition
• typechecking the substituted body against the expected result type (list[nat]), with

the predicate as a condition.

With these changes, the TCC becomes
append_nat_TCC1: OBLIGATION
FORALL (a, b: list[nat], x: int, y: list[int]):
every({i: int | i >= 0})(append_int(a, b)) AND a = cons(x, y)
IMPLIES
every[int]({i: int | i >= 0})(cons[int](x, append_int(y, b)));

and this is easily discharged automatically (e.g., with grind).
Note that recursive judgements are used in exactly the same way as the non-recursive form;
the only difference is in the generated TCCs.
Recursive judgements are only allowed on recursive functions, and they are only for closure
conditions (i.e., arguments must be provided). If a non-recursive judgement is given where a
recursive judgement would apply, then a warning is output. In general, recursive judgements
are preferred. In fact, we considered making it the default behavior for judgements on
recursive functions, but this would make existing proofs fail.

Prelude Additions

To support the Yices interface, several operators from the bitvector library have been moved
to the prelude. These are in the new theories floor_div_props, mod, bv_arith_nat_defs,
bv_int_defs, bv_arithmetic_defs, and bv_extend_defs. The floor_div_props and

8 PVS Release Notes

mod theories have been moved completely, the rest have only had the operators added to
the prelude - the rest of the theory, along with lemmas and other useful declarations, is still
in the bitvector library - just drop the _def for the corresponding theory.
Note that this can have some side effects. For example, the WIFT tutorial adder example
expects conversions to be used in a certain way because there were no arithmetic operators
on bit vectors. Now that there are such operators, conversions no longer are needed, and
proofs obviously fail.

Decimal Representation for Numbers

PVS now has support for decimal representation of numbers, for example, 3.1416. In-
ternally, this is treated as a fraction, in this case 31416/10000. So there is no floating
point arithmetic involved, and the results are exact, since Common Lisp represents frac-
tions exactly. The decimal representation must start with an integer, i.e., 0.007 rather
than .007.

Unary +

The + operator may now be used as a unary operator. Note that there is no definition
for unary +, for example, +1 will lead to a type error. This was added primarily for user
declarations.

Bug Fixes

This version fixes many (though not all) bugs. Generally those marked as analyzed in the
PVS bugs list have been fixed, and most have been incorporated into our validation suite.

Incompatibilities

There were some improvements made to judgements and TCC generation, that in some
cases lead to different forms of TCCs. In the validation suite, these were all easily detected
and the proofs were not difficult to repair.
It was noted in bug number 920 that the instantiator only looks for matches within the
sequent, though often there are matches from the Skolem constants that are not visible.
The inst? command was modified to look in the Skolem constants as a last resort, so earlier
proofs would still work. Unfortunately, grind and similar strategies use inst? eagerly, and
may now find a Skolem constant match that is incorrect, rather than waiting for a better
match after further processing. This is exactly the problem that lazy-grind was created
for. In our validation suite only a few formulas needed to be repaired, and those generally
could be fixed simply by replacing grind by lazy-grind. Since hidden Skolem constants
are difficult for a new user to deal with, we feel that this is a worthwhile change.

PVS 3.2 Release Notes 9

PVS 3.2 Release Notes

PVS 3.2 contains a number of enhancements and bug fixes.

Installation Notes

Installation is the same as usual. However, if you have received patches from SRI that you
have put into your ~/.pvs.lisp file, they should be removed. If you anticipate wanting to
try the newer and older versions together, you can do this by using #-pvs3.2 in front of
the patches. This is a directive to the Lisp reader, and causes the following s-expression to
be ignored unless it is an earlier version of PVS.

New Features

Startup Script Update

The PVS startup script pvs has been made to work with later versions of Linux (i.e., RedHat
9 and Enterprise).

Theory Interpretation Enhancements

There are a number of changes related to theory interpretations, as well as many bug fixes.

There is now a new form of mapping that makes it simpler to systematically interpret
theories. This is the Theory View, and it allows names to be associated without having to
directly list them. For example, given a theory of timed automaton:

automaton:THEORY
BEGIN
actions: TYPE+;
visible(a:actions):bool;
states: TYPE+;
enabled(a:actions, s:states): bool;
trans(a:actions, s:states):states;
equivalent(a1, s2:states):bool;
reachable(s:states):bool
start(s:states):bool;

END automaton

One can create a machine with definitions for actions, etc., and create the corresponding
interpretation simply by typing

IMPORTING automaton :-> machine

This is read as a machine viewed as an automaton, and is equivalent to

IMPORTING machine
IMPORTING automaton {{ actions := machine.actions, ... }}

Here the theory view was in an importing, but it is really a theory name, and hence may
be used as part of any name. However, the implicit importing of the target is done only for
theory declarations and importings. In all other cases, the instance needed must already be
imported. Thus it is an error to reference

10 PVS Release Notes

automaton :-> machine.start(s)

unless machine has already been imported. This is not very readable,1 so it is best to
introduce a theory abbreviation:

IMPORTING automaton :-> machine AS M1a

or a theory declaration:

M1t: THEORY = automaton :-> machine

The difference is that M1a is just an abbreviation for an instance of an existing theory,
whereas M1t is a new copy of that theory, that introduces new entities. Thus consider

IMPORTING automaton :-> machine AS M2a
M2t: THEORY = automaton :-> machine

The formula M1a.actions = M2a.actions is type correct, and trivially true, whereas
M1t.actions = M2t.actions is not even type correct, as there are two separate actions
declarations involved, and each of those is distinct from machine.actions.

The grammar for Name and TheoryName has been changed to reflect the new syntax:

TheoryName := [Id ’]́ Id [Actuals] [Mappings] [’:->’ TheoryName]

Name := [Id ’]́ IdOp [Actuals] [Mappings]
[’:->’ TheoryName] [’.’ IdOp]

The left side of :-> is called the source, and the right side is called the target. Note that in
this case the target provides a refinement for the source.

For a given theory view, names are matched as follows. The uninterpreted types and
constants of the target are collected, and matched to the types and constants of the source.
Partial matching is allowed, though it is an error if nothing matches. After finding the
matches, the mapping is created and typechecked.

References to Mapped Entities

Mapping an entity typically means that it is not accessible in the context. For example,
one may have

IMPORTING T{{x := e}} AS T1

where the e is an expression of the current context. The x, having been mapped, is not
available, but it is easy to forget this and one is often tempted to refer to T1.x. One possible
work-around is to use theory declarations with = in place of :=, but then a new copy of T
will be created, which may not be desirable (or in some cases even possible - see the Theory
Interpretations Report).

To make mappings more convenient, such references are now allowed. Thus in a name of
the form T1.x, x is first looked for in T1 in the usual way, but if a compatible x cannot be
found, and T1 has mappings, then x is searched for in the left sides, and treated as a macro
for the right side if found. Note that x by itself cannot be referenced in this way; the theory
name must be included.

1 Parentheses seem like they would help, but it is difficult to do this with the current parser.

PVS 3.2 Release Notes 11

Cleaning up Specifications

Developing specifications and proofs often leads to the creation of definitions and lemmas
that turn out not to be necessary for the proof of the properties of interest. This results in
specifications that are difficult to read. Removing the unneeded declarations is not easy, as
it is difficult to know whether they are actually used or not.
The new commands unusedby-proof-of-formula and unusedby-proofs-of-formulas fa-
cilitate this. The unusedby-proof-of-formula command creates a ’Browse’ buffer listing
all the declarations that are unused in the proof of the given formula. Removing all these
declarations and those that follow the given formula should give a theory that typechecks
and for which the proofchain is still complete, if it was in the full theory. This could be
done automatically in the future.

Binary Files

PVS specifications are saved as binary (.bin) files, in order to make restarting the system
faster. Unfortunately, it often turned out that loading them caused problems. This was
handled by simply catching any errors, and simply retypechecking. Thus in many cases the
binary files actually made things slower.
Until PVS version 3.2, binary files corresponded to the specification files. This means that
if there is a circularity in the files (i.e., theories A and C are in one file, B in another, with A
importing B importing C) then there is no way to load these files. In 3.2, bin files correspond
to theories. These are kept in a pvsbin subdirectory of the current context.
However, there was a more serious problem with the binary files. It turns out that loading
a binary file took more space, and the proofs took longer to run. The reason for this is that
the shared structure that is created when typechecking sources is mostly lost when loading
binary files. Only the structure shared within a given specification file was actually shared.
In particular, types are kept in canonical form, and when shared, testing if two types are
equal or compatible is much faster.
The binary files are now saved in a way that allows the shared structure to be regained.
In fact, there is now more sharing than obtained by typechecking. This is one of the main
reasons that this release took so long, as this forced many new invariants on the typechecker.
The payoff is that, in general, binary files load around five times faster than typechecking
them, and proofs run a little faster because of the increased sharing. This is based on
only a few samples, in the future we plan on systematically timing the specifications in our
validation suite.

Generating HTML

The commands html-pvs-file and html-pvs-files generate HTML for PVS specification
files. These can be generated in place, or in a specified web location. This is driven by
setting a Lisp variable *pvs-url-mapping*, as described below.
The in place version creates a pvshtml subdirectory for each context and writes HTML files
there. This is done by copying the PVS file, and adding link information so that comments
and whitespace are preserved. Note that there is no html-theory command. This is not
an oversight; in creating the HTML file links are created to point to the declarations of
external HTML files. Hence if there was as way to generate HTML corresponding to both
theory and PVS file, it would be difficult to decide which a link should refer to.

12 PVS Release Notes

HTML files can be generated in any order, and may point to library files and the prelude.
Of course, if these files do not exist then following these links will produce a browser error.
The html-pvs-files command will attempt to create all files that are linked to, failure is
generally due to write permission problems.

Usually it is desirable to put the HTML files someplace where anybody on the web can see
them, in which case you should set the *pvs-url-mapping* variable. It’s probably best
to put this in your ~/.pvs.lisp file in your home directory so that it is consistently used.
This should be set to a list value, as in the following example.

(setq *pvs-url-mapping*
’("http://www.csl.sri.com/~owre/"
"/homes/owre/public_html/"
("/homes/owre/pvs-specs" "pvs-specs" "pvs-specs")
("/homes/owre/pvs3.2" "pvs-specs/pvs3.2" "pvs-specs/pvs3.2")
("/homes/owre/pvs-validation/3.2/libraries/LaRC/lib"
"pvs-specs/validation/nasa"
"pvs-specs/validation/nasa")))

The first element of this list forms the base URL, and is used to create a <base> element
in each file. The second element is the actual directory associated with this URL, and
is where the html-pvs-file commands put the generated files. The rest of the list is
composed of lists of three elements: a specification directory, a (possibly relative) URL,
and a (possibly relative) HTML directory. In the above example, the base URL is http:
//www.csl.sri.com/~owre/, which the server associates with /homes/owre/public_html.
The next entry says that specs found in (a subdirectory of) /homes/owre/pvs-specs are to
have relative URLs corresponding to pvs-specs, and relative subdirectories similarly. Thus
a specification in /homes/owre/pvs-specs/tests/conversions/ will have a correspond-
ing HTML file in /homes/owre/public_html/pvs-specs/test/conversions/ and corre-
spond to the URL http://www.csl.sri.com/~owre/pvs-specs/test/conversions/. In
this case, PVS is installed in /homes/owre/pvs3.2, and thus references to the prelude and
distributed libraries (such as finite sets), will be mapped as well. Note that in this example,
all the relative structures are the same, but it doesn’t have to be that way.

The *pvs-url-mapping* is checked to see that the directories all exist, though currently no
URLs are checked (if anybody knows a nice way to do this from Lisp, please let us know). If
a subdirectory is missing, the system will prompt you for each subdirectory before creating
it. A n or q answer terminates processing without creating the directory, a y creates the
directory and continues, and a ! causes it to just create any needed directories without
further questions.

If a *pvs-url-mapping* is given, it must be complete for the file specified in the html-
pvs-file command. In practice, this means that your PVS distribution must be mapped
as well. PVS will complain if it is not complete; in which case simply add more information
to the *pvs-url-mapping* list.

No matter which version is used, the generated HTML (actually XHTML) file contains a
number of elements. These simply provide a way to add class attributes, which
can then be used in Cascading Style Sheet (CSS) files to define fonts, colors, etc. The classes
currently supported are:

span.comment

PVS 3.2 Release Notes 13

span.theory
span.datatype
span.codatatype
span.type-declaration
span.formal-declaration
span.library-declaration
span.theory-declaration
span.theory-abbreviation-declaration
span.variable-declaration
span.macro-declaration
span.recursive-declaration
span.inductive-declaration
span.coinductive-declaration
span.constant-declaration
span.assuming-declaration
span.tcc-declaration
span.formula-declaration
span.judgement-declaration
span.conversion-declaration
span.auto-rewrite-declaration

See the <PVS>/lib/pvs-style.css file for examples. This file is automatically copied to
the base directory if it doesn’t already exist, and it is referenced in the generated HTML
files. Most browsers underline links, which can make some operators difficult to read, so this
file also suppresses underlines. This file may be edited to suit your own taste or conventions.
Both the html-pvs-file commands take an optional argument. Without it, many of the
common prelude operators are not linked to. With the argument all operators get a link.
Overloaded operators not from the prelude still get links.

Default Strategies

There is now a default-strategy that is used by the prover for the prove-using-default
commands, and may be used as a parameter in pvs-strategies files. For example, the pvs-
strategies file in the home directory may reference this, which is set to different values in
different contexts.

Better handling of TCCs in Proofs

While in the prover, the typechecker now checks the sequent to see if the given expression
needs to have a TCC generated. It does this by examining the formulas of the sequent, to
see if the given expression occurs at the top level, or in a position from which an unguarded
TCC would be generated. Thus if 1/x appears in the sequent in an equation y = 1/x, the
TCC x /= 0 will not be generated. But if the expression only appears in a guarded formula,
for example, x = 0 IMPLIES y = 1/x, then the TCC will still be generated.
This is sound, because for the expression to appear in the sequent necessary TCCs must al-
ready have been generated. This greatly simplifies proofs where annoying TCCs pop up over
and over, and where the judgment mechanism is too restrictive (for example, judgements
cannot currently state that x * x >= 0 for any real x).
Obviously, this could affect existing proofs, though it generally makes them much simpler.

14 PVS Release Notes

typepred! rule and all-typepreds strategy

Any given term in the sequent may have associated implicit type constraints. When a term
is first introduced to a sequent there may be TCCs associated, either on the formula itself,
or as new branches in the proof. The term may subsequently be rewritten, but there is
still associated with the term an implicit TCC. For example, the term 1/f(x) may be
introduced, and later simplified to 1/(x * x - 1). Since f(x) was known to be nonzero, it
follows that x * x - 1 is also nonzero (in this context), though this is not reflected in the
types or judgements.

The typepred! rule has been modified to take a :implicit-typepreds? argument, which
looks for occurrences of the given expression in the sequent, and creates the implicit type
constraint (if any) as a hypothesis. It does this only for occurrences that are unguarded,
i.e., occur positively. This is stricter than the way TCCs are actually generated. This
is needed because, for example, conjunction is commutative, and can be rewritten in the
prover. Thus the hypothesis x /= 0 => 1/x /= x could be rewritten to 1/x = x => x = 0,
and the left-to-right reading will generate x /= 0, which is obviously unsound. Note that
this does not mean that TCC generation or applying the rewrite is unsound, as the TCC
simply says that a type can be assigned to the term. Technically, a TCC for a term of the
form A => B could be a disjunction (A => TCC(B)) OR (NOT B => TCC(A)), but this is more
costly in many ways, and rarely useful in practice.

Thus the command (typepred! "x * x - 1" :implicit-typepreds? t) generates the hy-
pothesis x * x - 1 /= 0 assuming that the term occurs positively in a denominator.

A generally more useful strategy is all-typepreds. This collects the implicit type con-
straints for each subexpression of the specified formula numbers. This can be especially
handy for automating proofs, though there is the potential of creating a lot of irrelevant
hypotheses.

grind-with-ext and reduce-with-ext

There are two new prover commands: grind-with-ext and reduce-with-ext. These are
essentially the same as grind and reduce, but also perform extensionality. This is especially
useful when reasoning about sets.

New forward chain commands

There are new forward chain commands available: forward-chain@, forward-chain*, and
forward-chain-theory. forward-chain@ takes a list of forward-chaining lemmas (of the
form A1 & ... & An => B, where free variables in B occur among the free variables in the Ai),
and attempts the forward-chain rule until the first one succeeds. forward-chain* takes a
list, and repeatedly forward-chains until there is no change; when successful it starts back
at the beginning of the list. forward-chain-theory creates a list of the applicable lemmas
of the given theory and invokes forward-chain*.

TeX Substitutions

TeX substitutions have been improved, allowing substitutions to be made for various de-
limiters, as shown below. The TeX commands are defined in the pvs.sty file at the top
level of the PVS directory. They consist of the prefix, followed by ’l’ or ’r’ to indicate the
left or right delimiter.

PVS 3.2 Release Notes 15

Name Symbols TeX Command Prefix TeX
parentheses () \pvsparen ()
brackets [] \pvsbracket []
record type constructors [# #] \pvsrectype [# #]
bracket bar [| |] \pvsbrackvbar [[]]
parenthesis bar (| |) \pvsparenvbar ([])
brace bar {| |} \pvsbracevbar {[]}
list constructor (: :) \pvslist 〈 〉
record constructor (# #) \pvsrecexpr (# #)
These can be customized either by including new mappings for the symbols in a pvs-
tex.sub file, or by overriding the TeX commands in your LaTeX file. It may be useful to
look at the default pvs.sty and pvs-tex.sub files; both are located in the top level of the
PVS installation (provided by M-x whereis-pvs).

add-declaration and IMPORTINGs

The add-declaration command now allows IMPORTINGs. This is most useful during a
proof when a desired lemma is in a theory that has not been imported. Note that it is
possible for the file to no longer typecheck due to ambiguities after this, even though the
proof will go through just fine. Such errors are typically very easy to repair.

Prelude additions

Although no new theories have been added, there are a number of new declarations,
mostly lemmas. These are in the theories sets, function_inverse, relation_defs,
naturalnumbers, reals, floor_ceil, exponentiation, and finite_sets.
The bv_cnv theory was removed, as the conversion can sometimes hide real type errors. To
enable it, just add the following line to your specification.

CONVERSION fill[1]

Bug Fixes

The PVS Bugs List shows the status of reported bugs. Not all of these have been fixed as
of PVS version 3.2. Those marked feedback or closed are the ones that have been fixed.
The more significant bug fixes are described in the following subsections.

Retypechecking

PVS specifications often span many files, with complex dependencies. The typechecker
is lazy, so that only those theories affected by a change will need to be retypechecked.
In addition, not all changes require retypechecking. In particular, adding comments or
whitespace will cause the typechecker to reparse and compare the theories to see if there
was a real change. If not, then the place information is updated and nothing needs to
be retypechecked. Otherwise, any theory that depends on the changed theory must be
untypechecked. This means that the typechecker cannot decide if something needs to be
untypechecked until it actually reparses the file that was modified.
Thus when a file is retypechecked, it essentially skips typechecking declarations until it
reaches an importing, at which point it retypechecks that theory. When it reaches a theory
that has actually changed, untypechecking is triggered for all theories that import the

http://www.csl.sri.com/cgi-bin/pvs/pvs-bug-list/

16 PVS Release Notes

changed theory. The bug was that only the top level theory was untypechecked correctly;
any others would be fully untypechecked, but since they were already in the process of being
typechecked, earlier declarations would no longer be valid.

The fix is to keep a stack of the theories being typechecked and the importing they are
processing, and when a change is needed, the theories are only untypechecked after the
importing.

Quantifier Simplification

In PVS 3.1, a form of quantifier simplification was added, so that forms such as FORALL
x: x = n IMPLIES p(x) were automatically simplified to p(n). In most cases, this is very
useful, but there are situations where the quantified form is preferable, either to trigger
forms of auto-rewriting or to allow induction to be used.

Many proof commands now include a :quant-simp? flag to control this behavior. By
default, quantifier simplification is not done; setting the flag to t allows the simplification.

simplify, assert, bash, reduce, smash, grind, ground, lazy-grind, crush, and reduce-
ext all have this flag.

Incompatibilities

Ground Decision Procedure Completeness

The decision procedures have been made more complete, which means that some proofs
may finish sooner. Unfortunately, some proofs may also loop that didn’t before2. This is
usually due to division, and a workaround is to use the name-replace command to replace
the term involving division with a new name, and then using the decision procedure (e.g.,
assert). If you find that the prover is taking too long, you can interrupt it with C-c C-c,
and run :bt to see the backtrace. If it shows something like the following, then you know
you are in the ground decision procedure.

find1 <-
pr-find <- chainineqs <- transclosure <- addineq <- process1 <-
ineqsolve <- arithsolve <- solve <- pr-merge <- process1 <-
ineqsolve <- arithsolve <- solve

At this point, you can either run (restore) to try a different command (like name-replace),
or :cont in the hope that it will terminate with a little more time. And yes, there are
situations where the bug is not a problem, it just takes a long time to finish.

Actuals not allowed for Current Theory

In the past, a name could reference the actuals of the current theory. This is actually a
mistake, as the actuals were generally ignored in this case. Though this rarely caused prob-
lems, there were a few reported bugs that were directly due to this, so now the system will
report that the actuals are not allowed. To fix this, simply remove the actual parameters.
Note that this can affect both specifications and proofs.

2 There are some outstanding bugs reported on decision procedure loops that have not yet been resolved

PVS 3.2 Release Notes 17

Referencing Library Theories

In earlier versions of PVS, once a library theory was typechecked, it could be referenced
without including the library id. This is no longer valid. First of all, if the given theory
appears in two different libraries, it is ambiguous. Worse, if it also appears in the current
context, there is no way to disambiguate. Finally, even if there is no ambiguity at all, there
can still be a problem. Consider the following:

A: THEORY ... IMPORTING B, C ... END A

B: THEORY ... IMPORTING lib@D ... END B

C: THEORY ... IMPORTING D ... END C

This typechecks fine in earlier versions of PVS, but if in the next session the user decides
to typecheck C first, a type error is produced.

Renaming of Bound Variables

This has been improved, so that variables are generally named apart. In some cases, this
leads to proofs failing for obvious reasons (an inst variable does not exist, or a skolem
constant has a different name).

bddsimp and Enumeration Types

Fixed bddsimp to return nicer formulas when enumeration types are involved. These are
translated when input to the BDD package, but the output was untranslated. For example,
if the enumeration type is {a, b, c}, the resulting sequents could have the form

a?(x) b?(x)
|---- |---- |----

a?(x) b?(x)
a?(x)

With this change, instead one gets

a?(x) b?(x) c?(x)
|---- |---- |----

Which is nicer, and matches what is returned by prop. This makes certain proofs faster,
because they can use the positive information, rather than the long and irrelevant negative
information. Of course, the different formula numbering can affect existing proofs.

Prettyprinting Theory Instances

The prettyprint-theory-instance command was introduced along with theory interpre-
tations, but it was restricted to theory instances that came from theory declarations, and
would simply prettyprint these. Unfortunately, such theories are very restricted, as they
may not refer to any local declarations. The prettyprint-theory-instance now allows
any theory instance to be given, and displays the theory with actuals and mappings per-
formed. This is not a real theory, just a convenient way of looking at all the parts of the
theory instance.

18 PVS Release Notes

Assuming and Mapped Axiom TCC Visibility Rules

The visibility rules for assumings and mapped axioms has been modified. Most TCCs are
generated so that the entity that generated them is not visible in a proof. This is done
simply by inserting the TCCs before the generating declaration. Assuming and Mapped
Axiom TCCs are a little different, in that they may legitimately refer to declarations that
precede them in the imported theory. To handle this, these TCCs are treated specially when
creating the context. All declarations preceding the assuming or axiom that generated the
TCC are visible in the proof of the TCC.

Replacing actuals including types

The replace prover command now does the replacement in types as well as expressions
when the :actuals? flag is set. It is possible, though unlikely, that this could cause current
proofs to fail. It is more likely that branches will be proved sooner.

expand Rule uses Full Name

When the expand rule was given a full name it would ignore everything but the id. This has
been fixed, so that other information is also used. For this command, the name is treated
as a pattern, and any unspecified part of the name is treated as matching anything. Thus
th.foo will match foo only if it is from theory th, but will match any instance or mapping
of th. foo[int] will match any occurrence of foo of any theory, as long as it has a single
parameter matching int. The occurrence number counts only the matching instances.
This change is only going to affect proofs in which more than just an identifier is given to
expand.

finite sets min and max renamed

In theory finite_sets_minmax the functions min and max defined on the type parameter
have been renamed to fsmin and fsmax, respectively. This was done because they are only
used in the definitions of min and max over finite sets, and can cause ambiguities elsewhere.

induct no longer beta-reduces everything

There was a bug reported where induct was generating a large number of subgoals; this
turned out to be due to the indiscriminate use of beta, which was intended to simplify
newly added formulas but could also affect the conclusion and subsequent processing. To
fix this, beta is now only applied to newly generated formulas. This may make some proofs
fail, though generally they will be fixed simply by using beta after induct.

PVS 3.1 Release Notes 19

PVS 3.1 Release Notes

PVS 3.1 is primarily a bug fix release, there are no new features, although the prelude has
been augmented. Some of the changes do affect proofs, though our experience is that only
a few proofs need adjustment, and most of these were quite easy to recognize and fix.
The bugs that have been fixed in 3.1 are mostly those reported since December 2002. Some
of these fixes are to the judgement and TCC mechanism, so may have an impact on existing
proofs. As usual, if it is not obvious why a proof is failing, it is often easiest to run it in
parallel on an earlier version to see where it differs.
Some of the differences can be quite subtle, for example, one of the proofs that quit working
used induct-and-simplify. There were two possible instantiations found in an underlying
inst? command, and in version 3.0 one of these led to a nontrivial TCC, so the other was
chosen. In version 3.1, a fix to the judgement mechanism meant that the TCC was no
longer generated, resulting in a different instantiation. In this case the proof was repaired
using :if-match all.
Most of the other incompatibilities are more obvious, and the proofs are easily repaired. If
you have difficulties understanding why a proof has failed, or want help fixing it, send it to
PVS bugs.
Thanks to Jerry James, a number of new theories and declarations have been added to
the prelude. Several judgments have been added. Remember that these generally result in
fewer TCCs, and could affect proofs as noted above.

mailto:pvs-bugs@csl.sri.com
mailto:jamesj@acm.org

20 PVS Release Notes

PVS 3.0 Release Notes 21

PVS 3.0 Release Notes

The PVS 3.0 release notes contain the features, bug fixes, and incompatibilities of PVS
version 3.0 over version 2.4.

Overview

We are still working on updating the documentation, and completion of the ICS decision
procedures. Please let us know of any bugs or suggestions you have by sending them to
PVS bugs.

In addition to the usual bug fixes, there are quite a few changes to this release. Most
of these changes are backward compatible, but the new multiple proofs feature makes it
difficult to run PVS 3.0 in a given context and then revert back to an earlier version. For
this reason we strongly suggest that you copy existing directories (especially the proof files)
before running PVS 3.0 on existing specifications.

New Features

There are a number of new features in PVS 3.0.

Allegro 6.2 port

PVS 3.0 has been ported to the case-sensitive version of Allegro version 6.2. This was done
in order to be able to use the XML support provided by Allegro 6.2. We plan to both write
and read XML abstract syntax for PVS, which should make it easier to interact with other
systems.

Note: for the most part, you may continue to define pvs-strategies (and the files they load)
as case insensitive, but in general this cannot always be done correctly, and it means that
you cannot load such files directly at the lisp prompt. If you suspect that your strategies are
not being handled properly, try changing it to all lower case (except in specific instances),
and see if that helps. If not, send the strategies file to PVS Bugs and we’ll fix it as quickly
as we can. Because there is no way to handle it robustly, and since case-sensitivity can
actually be useful, in the future we may not support mixed cases in strategy files.

Theory Interpretations

Theory interpretations are described fully in Theory Interpretations in PVS

NOTES:

• This introduces one backward incompatible change; theory abbreviations such as
foo: THEORY = bar[int, 3]

should be changed to the new form
IMPORTING bar[int, 3] AS foo

Note that ‘AS’ is a new keyword, and may cause parse errors where none existed before.
• The stacks example doesn’t work as given, and there is an improved version that will

be available shortly, built on the new equivalence class definition in the prelude.
Otherwise unprovable TCCs result (e.g., every stack is nonempty).

http://ics.csl.sri.com
mailto:pvs-bugs@csl.sri.com
mailto:pvs-bugs@csl-sri.com
http:penalty z@ //pvspenalty z@ .cslpenalty z@ .sripenalty z@ .com/docpenalty z@ /interpretations.html

22 PVS Release Notes

Multiple Proofs

PVS now supports multiple proofs for a given formula. When a proof attempt is ended,
either by quitting or successfully completing the proof, the proof is checked for changes. If
any changes have occured, the user is queried about whether to save the proof, and whether
to overwrite the current proof or to create a new proof. If a new proof is created, the user
is prompted for a proof identifier and description.
In addition to a proof identifier, description, and proof script, the new proof contains the
status, the date of creation, the date last run, and the run time. Note that this information
is kept in the .prf files, which therefore look different from those of earlier PVS versions.
Every formula that has proofs has a default proof, which is used for most of the existing
commands, such as prove, prove-theory, and status-proofchain. Whenever a proof is saved,
it automatically becomes the default.
Three new Emacs commands allow for browsing and manipulating multiple proofs:
display-proofs-formula, display-proofs-theory, and display-proofs-pvs-file.
These commands all pop up buffers with a table of proofs. The default proof is marked
with a ‘+’. Within such buffers, the following keys have the following effects.

Key Effect

c Change description: add or change the description for the proof

d Default proof: set the default to the specified proof

e Edit proof: bring up a Proof buffer for the specified proof; the proof may then
be applied to other formulas

p Prove: rerun the specified proof (makes it the default)

q Quit: exit the Proof buffer

r Rename proof: rename the specified proof

s Show proof: Show the specified proof in a Proof:id buffer

DEL Delete proof: delete the specified proof from the formula

At the end of a proof a number of questions may be asked:
• Would you like the proof to be saved?
• Would you like to overwrite the current proof?
• Please enter an id
• Please enter a description:

This may be annoying to some users, so the command M-x pvs-set-proof-prompt-
behavior was added to control this. The possible values are:

:ask the default; all four questions are asked

:overwrite
similar to earlier PVS versions; asks if the proof should be saved and then
simply overwrites the earlier one.

:add asks if the proof should be saved, then creates a new proof with a generated id
and empty description.

Note that the id and description may be modified later using the commands described
earlier in this section.

PVS 3.0 Release Notes 23

Better Library Support

PVS now uses the PVS_LIBRARY_PATH environment variable to look for library pathnames,
allowing libraries to be specified as simple (subdirectory) names. This is an extension of
the way, for example, the finite_sets library is found relative to the PVS installation
path—in fact it is implicitly appended to the end the PVS_LIBRARY_PATH.
The .pvscontext file stores, amongst other things, library dependencies. Any library found
as a subdirectory of a path in the PVS_LIBRARY_PATH is stored as simply the subdirectory
name. Thus if the .pvscontext file is included in a tar file, it may be untarred on a
different machine as long as the needed libraries may be found in the PVS_LIBRARY_PATH.
This makes libraries much more portable.
In addition, the load-prelude-library command now automatically loads the pvs-lib.el
file, if it exists, into Emacs and the pvs-lib.lisp file, if it exists, into lisp, allowing the
library to add new features, e.g., key-bindings. Note that the pvs-lib.lisp file is not
needed for new strategies, which should go into the pvs-strategies file as usual. The
difference is that the pvs-strategies file is only loaded when a proof is started, and it
may be desirable to have some lisp code that is loaded with the library, for example, to
support some new Emacs key-bindings.
The PVS_LIBRARY_PATH is a colon-separated list of paths, and the lib subdirectory of the
PVS path is added implicitly at the end. Note that the paths given in the PVS_LIBRARY_
PATH are expected to have subdirectories, e.g., if you have put Ben Di Vito’s Manip-package
in ~/pvs-libs/Manip-1.0, then your PVS_LIBRARY_PATH should only include ~/pvs-libs,
not ~/pvs-libs/Manip-1.0.
If the pvs-libs.lisp file needs to load other files in other libraries, use libload. For
example, César Muñoz’s Field Package loads the Manip-package using (libload "Manip-
1.0/manip-strategies")

A new command, M-x list-prelude-libraries, has been added that shows the prelude
library and supplemental files that have been loaded in the current context.

Cotuples

PVS now supports cotuple types (also known as coproduct or sum types) directly. The
syntax is similar to that for tuple types, but with the ‘,’ replaced by a ‘+’. For example,

cT: TYPE = [int + bool + [int -> int]]

Associated with a cotuple type are injections IN_i, predicates IN?_i, and extractions OUT_i
(none of these is case-sensitive). For example, in this case we have

IN_1: [int -> cT]
IN?_1: [cT -> bool]
OUT_1: [(IN?_1) -> int]

Thus IN_2(true) creates a cT element, and an arbitrary cT element c is processed using
CASES, e.g.,

CASES c OF
IN_1(i): i + 1,
IN_2(b): IF b THEN 1 ELSE 0 ENDIF,
IN_3(f): f(0)

ENDCASES

http://shemesh.larc.nasa.gov/people/bld/manip.html
http://www.icase.edu./~munoz/Field/field.html

24 PVS Release Notes

This is very similar to using the union datatype defined in the prelude, but allows for any
number of arguments, and doesn’t generate a datatype theory.
Typechecking expressions such as IN_1(3) requires that the context of its use be known.
This is similar to the problem of a standalone PROJ_1, and both are now supported:

F: [cT -> bool]
FF: FORMULA F(IN_1(3))
G: [[int -> [int, bool, [int -> int]]] -> bool]
GG: FORMULA G(PROJ_1)

This means it is easy to write terms that are ambiguous:
HH: FORMULA IN_1(3) = IN_1(4)
HH: FORMULA PROJ_1 = PROJ_1

This can be disambiguated by providing the type explicitly:
HH: FORMULA IN_1[cT](3) = IN_1(4)
HH: FORMULA PROJ_1 = PROJ_1[[int, int]]

This uses the same syntax as for actual parameters, but doesn’t mean the same thing, as
the projections, injections, etc., are builtin, and not provided by any theories. Note that
coercions don’t work in this case, as PROJ_1::[[int, int] -> int] is the same as

(LAMBDA (x: [[int, int] -> int]): x)(PROJ_1)

and not
LAMBDA (x: [int, int]): PROJ_1(x)

The prover has been updated to handle extensionality and reduction rules as expected.

Coinduction

Coinductive definitions are now supported. They are like inductive definitions, but intro-
duced with the keyword ‘COINDUCTIVE’, and generate the greatest fixed point.

Datatype Updates

Update expressions now work on datatypes, in much the same way they work on records. For
example, if lst: list[nat], then lst WITH [‘car := 0] returns the list with first element
0, and the rest the same as the cdr of lst. In this case there is also a TCC of the form
cons?(lst), as it makes no sense to set the car of null.
Complex datatypes with overloaded accessors and dependencies are also handled. For ex-
ample,

dt: DATATYPE
BEGIN
c0: c0?
c1(a: int, b: {z: (even?) | z > a}, c: int): c1?
c2(a: int, b: {n: nat | n > a}, c: int): c2?
END dt

datatype_update: THEORY
BEGIN
IMPORTING dt
x: dt

PVS 3.0 Release Notes 25

y: int
f: dt = x WITH [b := y]
END datatype_update

This generates the TCC

f_TCC1: OBLIGATION
(c1?(x) AND even?(y) AND y > a(x))

OR (c2?(x) AND y >= 0 AND y > a(x));

Datatype Additions

There are two additions to the theory generated from a datatype: a new ord function, and
an every relation. Both of these can be seen by examining the generated theories.

The new ord function is given as a constant followed by an ordinal axiom. The reason
for this is that the disjointness axiom is not generated, and providing interpretations for
datatype theories without it is not sound. However, for large numbers of constructors, the
disjointness axiom gets unwieldy, and can significantly slow down typechecking. The ord
axiom simply maps each constructor to a natural number, thus using the builtin disjointness
of the natural numbers. For lists, the new ord function and axiom are

list_ord: [list -> upto(1)]

list_ord_defaxiom: AXIOM
list_ord(null) = 0 AND
(FORALL (car: T, cdr: list): list_ord(cons(car, cdr)) = 1);

This means that to fully interpret the list datatype, list_ord must be given a mapping
and shown to satisfy the axiom.

If a top level datatype generates a map theory, the theory also contains an every relation.
For lists, for example, it is defined as

every(R: [[T, T1] -> boolean])(x: list[T], y: list[T1]): boolean =
null?(x) AND null?(y) OR
cons?(x) AND
cons?(y) AND R(car(x), car(y)) AND every(R)(cdr(x), cdr(y));

Thus, every(<)(x, y: list[nat]) returns true if the lists x and y are of the same length,
and each element of x is less than the corresponding element of y.

Conversion Extensions

Conversions are now applied to the components of tuple, record, and function types. For
example, if c1 is a conversion from nat to bool, and c2 from nat to list[bool], the tuple
(1, 2, 3) will be converted to (c1(1), 2, c2(3)) if the expected type is [bool, nat,
list[bool]]. Records are treated the same way, but functions are contravariant in the
domain; if f is a function of type [bool -> list[bool]], and the expected type is [nat ->
bool], then the conversion applied is LAMBDA (x: nat): c2(f(c1(x))).

Conversions now apply pointwise where possible. In the past, if x and y were state variables,
and K_conversions enabled, then x < y would be converted to LAMBDA (s: state): x(s)
< y(s), but x = y would be converted to LAMBDA (s: state): x = y, since the equality
typechecks without applying the conversion pointwise. Of course, this is rarely what is

26 PVS Release Notes

intended; it says that the two state variables are the same, i.e., aliases. The conversion
mechanism has been modified to deal with this properly.

Conversion Messages

Messages related to conversions have been separated out from the warnings, so that if any
are generated a message is produced such as

po_lems typechecked in 9.56s: 10 TCCs, 0 proved, 3 subsumed,
7 unproved; 4 conversions; 2 warnings; 3 msgs

In addition, the commands M-x show-theory-conversions and M-x show-pvs-file-
conversions have been added to view the conversions.

More TCC Information

Trivial TCCs of the form x /= 0 IMPLIES x /= 0 and 45 < 256 used to quietly be suppressed.
Now they are added to the messages associated with a theory, along with subsumed TCCs.
In addition, both trivial and subsumed TCCs are now displayed in commented form in the
show-tccs buffer.

Show Declaration TCCs

The command M-x show-declaration-tccs has been added. It shows the TCCs associated
with the declaration at the cursor, including the trivial and subsumed TCCs as described
above.

Numbers as Constants

Numbers may now be declared as constants, e.g.,
42: [int -> int] = LAMBDA (x: int): 42

This is most useful in defining algebraic structures (groups, rings, etc.), where overloading
0 and 1 is common mathematical practice. It’s usually a bad idea to declare a constant to
be of a number type, e.g.,

42: int = 57

Even if the typechecker didn’t get confused, most readers would.

Theory Search

When the parser encounters an importing for a theory foo that has not yet been type-
checked, it looks first in the .pvscontext file, then looks for foo.pvs. In previous versions,
if the theory wasn’t found at this point an error would result. The problem is that file
names often don’t match the theory names, either because a given file may have multiple
theories, or a naming convention (e.g., the file is lower case, but theories are capitalized)
Now the system will parse every .pvs file in the current context, and if there is only one file
with that theory id in it, it will be used. If multiple files are found, a message is produced
indicating which files contain a theory of that name, so that one of those may be selected
and typechecked.
NOTES:

• Once a file has been typechecked, the .pvscontext is updated accordingly, and this
check is no longer needed.

• .pvs files that contain parse errors will be ignored.

PVS 3.0 Release Notes 27

Improved Decision Procedures

The existing (named Shostak, for the original author) decision procedures have been made
more complete. Note that this sometimes breaks existing proofs, though they are generally
easy to repair, especially if the proof is rerun in parallel with the older PVS version. If you
have difficulties repairing your proofs, please let us know.

ICS Integration

PVS 3.0 now has an alpha test integration of the ICS decision procedure. Use M-x set-
decision-procedure ics to try it out. Note that this is subject to change, so don’t count
on proofs created using ICS to work in future releases. Please let us know of any bugs
encountered.

LET Reduce

The BETA and SIMPLIFY rules, and the ASSERT, BASH, REDUCE, SMASH, GRIND, GROUND, USE,
and LAZY-GRIND strategies now all take an optional LET-REDUCE? flag. It defaults to t, and
if set to nil keeps LET expressions from being reduced.

Prelude Changes in 3.0

New Theories

restrict_props, extend_props
Provides lemmas that restrict and extend are identities when the subtype
equals the supertype.

indexed_sets
Provides indexed union and intersection operations and lemmas.

number_fields
The real theory was split into two, with number_fields providing the field
axioms and the subtype reals providing the ordering axioms. This allows for
theories such as complex numbers to be inserted in between, thus allowing reals
to be a subtype of complex numbers without having to encode them.

nat_fun_props
Defines special properties of injective/surjective functions over nats, provided
by Bruno Dutertre.

finite_sets
combination of finite_sets_def (which was in the 2.4 prelude), card_def,
and finite_sets (from the finite sets library)

bitvectors:
To provide support for the bitvector theory built in to ICS, the following theories
were moved from the bitvectors library to the prelude: bit, bv, exp2, bv_cnv,
bv_concat_def, bv_bitwise, bv_nat, empty_bv, and bv_caret.

finite_sets_of_sets
Proves that the powerset of a finite set is finite, and provides the corresponding
judgement.

http:penalty z@ //icspenalty z@ .cslpenalty z@ .sripenalty z@ .com

28 PVS Release Notes

equivalence classes
The following theories were derived from those provided by Bart Jacobs:
EquivalenceClosure,
QuotientDefinition,
KernelDefinition,
QuotientKernelProperties,
QuotientSubDefinition,
QuotientExtensionProperties,
QuotientDistributive, and
QuotientIteration.

Partial Functions
Bart Jacobs also provided definitions for partial functions:
PartialFunctionDefinitions and PartialFunctionComposition.

New Declarations

The following declarations have been added to the prelude:
• relations.equivalence type,
• sets.setofsets,
• sets.powerset,
• sets.Union,
• sets.Intersection,
• sets_lemmas.subset_powerset,
• sets_lemmas.empty_powerset,
• sets_lemmas.nonempty_powerset,
• real_props.div_cancel4, and
• rational_props.rational_pred_ax2.

Modified Declarations

The following declarations have been modified. finite_sets.is_finite_surj was turned
into an IFF and extended from posnat to nat.
The fixpoint declarations of the mucalculus theory have been restricted to monotonic
predicates. This affects the declarations fixpoint?, lfp, mu, lfp?, gfp, nu, and gfp?.

Conversion Expressions

Conversions may now be any function valued expression, for example,
CONVERSION+ EquivClass(ce), lift(ce), rep(ce)

This introduces a possible incompatibility if the following declaration is for an infix operator.
In that case the conversion must be followed with a semi-colon ’;’.

Judgement TCC proofs

Judgement TCCs may now be proved directly, without having to show the TCCs using M-x
show-tccs or M-x prettyprint-expanded. Simple place the cursor on the judgement, and
run one of the proof commands. Note that there may be several TCCs associated with the

PVS 3.0 Release Notes 29

judgement, but only one of them is the judgement TCC. To prove the others you still need
to show the TCCs first.

PVS Startup Change

On startup, PVS no longer asks whether to create a context file if none exists, and if you
simply change to another directory no .pvscontext file is created. This fixes a subtle bug
in which typing input before the question is asked caused PVS to get into a bad state.

Dump File Change

The M-x dump-pvs-files command now includes PVS version information, Allegro build
information, and prelude library dependencies. Note that since the proof files have changed,
the dumps may look quite different. See the Multiple Proofs section for details.

Bitvector Library

Bart Jacobs kindly provided some additional theories for the bitvector library. These were
used as an aid to Java code verification, but are generally useful. The new files are
• BitvectorUtil,
• BitvectorMultiplication,
• BitvectorMultiplicationWidenNarrow,
• DivisionUtil,
• BitvectorOneComplementDivision,
• BitvectorTwoComplementDivision, and
• BitvectorTwoComplementDivisionWidenNarrow.

These are included in the libraries tar file.

Bug Fixes

Although there are still a number of bugs still outstanding, a large number of bugs have
been fixed in this release. All those in the pvs-bugs list that are marked as analyzed have
been fixed, at least for the specific specs that caused the bugs.

Incompatibilities

Most of these are covered elsewhere, they are collected here for easy reference.

Improved Decision Procedures

The decision procedures are more complete. Though this is usually a good thing, some
existing proofs may fail. For example, a given auto-rewrite may have worked in the past,
but now the key term has been simplified and the rewrite no longer matches.

Prelude Incompatibilities

These are given in Prelude Changes in 3.0. Theory identifiers used in the prelude may not
be used for library or user theories, some existing theories may need to be adjusted.
The theories finite_sets, finite_sets_def, and card_def were once a part of the
finite_sets library, but have been merged into a single finite_sets theory and moved
to the prelude. This means that the library references such as

httppenalty z@ ://pvspenalty z@ .cslpenalty z@ .sripenalty z@ .compenalty z@ /cgi-bin/pvspenalty z@ /pvs-bug-listpenalty z@ /?bugs=open&bugs=analyzed

30 PVS Release Notes

IMPORTING finite_sets@finite_sets
IMPORTING fsets@card_def

must be changed. In the first case just drop the prefix, drop the prefix and change card_def
to finite_sets in the second.
The reals theory was split in two, separating out the field axioms into the number_fields
theory. There is the possibility that proofs could fail because of adjustments related to this,
though this did not show up in our validations.

Theory Abbreviations

Theory abbreviations such as
foo: THEORY = bar[int, 3]

should be changed to the new form
IMPORTING bar[int, 3] AS foo

Note that ‘AS’ is a new keyword, and may cause parse errors where none existed before.

Conversion Expressions

Since conversions may now be arbitrary function-valued expressions, if the declaration fol-
lowing is an infix operator it leads to ambiguity. In that case the conversion must be followed
with a semi-colon ’;’.

Occurrence numbers in expand proof command

Defined infix operators were difficult to expand in the past, as the left to right count was
not generally correct; the arguments were looked at before the operator, which meant that
the parser tree had to be envisioned in order to get the occurrence number correct. This
bug has been fixed, but it does mean that proofs may need to be adjusted. This is another
case where it helps to run an earlier PVS version in parallel to find out which occurrence is
actually intended.

i

Short Contents

PVS 4.0 Release Notes . 3

PVS 3.2 Release Notes . 9

PVS 3.1 Release Notes . 19

PVS 3.0 Release Notes . 21

ii PVS Release Notes

iii

Table of Contents

PVS 4.0 Release Notes . 3
Installation Notes . 3
New Features . 3

Open Source . 3
Record and Tuple Type Extensions . 3
Structural Subtypes . 4
Empty and Singleton Record and Tuple Types. 5
PVSio . 5
Random Testing . 5
Yices . 6
Recursive Judgements TCCs . 7
Prelude Additions . 7
Decimal Representation for Numbers . 8
Unary + . 8

Bug Fixes . 8
Incompatibilities . 8

PVS 3.2 Release Notes . 9
Installation Notes . 9
New Features . 9

Startup Script Update . 9
Theory Interpretation Enhancements . 9
References to Mapped Entities . 10
Cleaning up Specifications . 11
Binary Files . 11
Generating HTML . 11
Default Strategies . 13
Better handling of TCCs in Proofs . 13
typepred! rule and all-typepreds strategy 14
grind-with-ext and reduce-with-ext . 14
New forward chain commands . 14
TeX Substitutions . 14
add-declaration and IMPORTINGs . 15
Prelude additions . 15

Bug Fixes . 15
Retypechecking . 15
Quantifier Simplification . 16

Incompatibilities . 16
Ground Decision Procedure Completeness . 16
Actuals not allowed for Current Theory . 16
Referencing Library Theories . 17
Renaming of Bound Variables . 17
bddsimp and Enumeration Types . 17

iv PVS Release Notes

Prettyprinting Theory Instances . 17
Assuming and Mapped Axiom TCC Visibility Rules 18
Replacing actuals including types . 18
expand Rule uses Full Name . 18
finite sets min and max renamed . 18
induct no longer beta-reduces everything . 18

PVS 3.1 Release Notes . 19

PVS 3.0 Release Notes . 21
Overview . 21
New Features . 21

Allegro 6.2 port . 21
Theory Interpretations. 21
Multiple Proofs . 22
Better Library Support . 23
Cotuples. 23
Coinduction . 24
Datatype Updates . 24
Datatype Additions . 25
Conversion Extensions . 25
Conversion Messages . 26
More TCC Information . 26
Show Declaration TCCs . 26
Numbers as Constants . 26
Theory Search . 26
Improved Decision Procedures . 27
ICS Integration . 27
LET Reduce . 27
Prelude Changes in 3.0 . 27

New Theories . 27
New Declarations . 28
Modified Declarations . 28

Conversion Expressions . 28
Judgement TCC proofs . 28
PVS Startup Change . 29
Dump File Change . 29
Bitvector Library . 29

Bug Fixes . 29
Incompatibilities . 29

Improved Decision Procedures . 29
Prelude Incompatibilities . 29
Theory Abbreviations . 30
Conversion Expressions . 30
Occurrence numbers in expand proof command 30

	PVS 4.0 Release Notes
	Installation Notes
	New Features
	Open Source
	Record and Tuple Type Extensions
	Structural Subtypes
	Empty and Singleton Record and Tuple Types
	PVSio
	Random Testing
	Yices
	Recursive Judgements TCCs
	Prelude Additions
	Decimal Representation for Numbers
	Unary +

	Bug Fixes
	Incompatibilities

	PVS 3.2 Release Notes
	Installation Notes
	New Features
	Startup Script Update
	Theory Interpretation Enhancements
	References to Mapped Entities
	Cleaning up Specifications
	Binary Files
	Generating HTML
	Default Strategies
	Better handling of TCCs in Proofs
	typepred! rule and all-typepreds strategy
	grind-with-ext and reduce-with-ext
	New forward chain commands
	TeX Substitutions
	add-declaration and IMPORTINGs
	Prelude additions

	Bug Fixes
	Retypechecking
	Quantifier Simplification

	Incompatibilities
	Ground Decision Procedure Completeness
	Actuals not allowed for Current Theory
	Referencing Library Theories
	Renaming of Bound Variables
	bddsimp and Enumeration Types
	Prettyprinting Theory Instances
	Assuming and Mapped Axiom TCC Visibility Rules
	Replacing actuals including types
	expand Rule uses Full Name
	finite_sets min and max renamed
	induct no longer beta-reduces everything

	PVS 3.1 Release Notes
	PVS 3.0 Release Notes
	Overview
	New Features
	Allegro 6.2 port
	Theory Interpretations
	Multiple Proofs
	Better Library Support
	Cotuples
	Coinduction
	Datatype Updates
	Datatype Additions
	Conversion Extensions
	Conversion Messages
	More TCC Information
	Show Declaration TCCs
	Numbers as Constants
	Theory Search
	Improved Decision Procedures
	ICS Integration
	LET Reduce
	Prelude Changes in 3.0
	New Theories
	New Declarations
	Modified Declarations

	Conversion Expressions
	Judgement TCC proofs
	PVS Startup Change
	Dump File Change
	Bitvector Library

	Bug Fixes
	Incompatibilities
	Improved Decision Procedures
	Prelude Incompatibilities
	Theory Abbreviations
	Conversion Expressions
	Occurrence numbers in expand proof command

