
Manip User’s Guide, Version 1.3

Ben L. Di Vito
NASA Langley Research Center

b.divito@nasa.gov

October 19, 2012

Abstract

Sequent manipulations for an interactive prover such as PVS can be labor intensive. We
provide an approach to tactic-based proving for improved interactive deduction in specialized
domains. This approach has been mechanized by the Manip package of strategies (tactics)
and support functions. Although it was designed originally to reduce the tedium of low-level
arithmetic manipulation, many of its newer features are suitable as general-purpose prover
utilities. Besides strategies aimed at algebraic simplification of real-valued expressions,
Manip includes term-access techniques applicable in arbitrary settings.

1 Introduction

Proving theorems involving nonlinear arithmetic can try a user’s patience. While the automated
deduction features of PVS can often find a proof, reasoning in the domain of nonlinear, real-
valued expressions is currently limited to specialized sub-domains. Fortunately, SRI continues
to increase the amount of automation in PVS and companion tools such as the SMT solver
Yices. Third-party contributors such as NASA Langley have introduced new capabilities for
deduction over polynomials.

We look forward to these and similar improvements. Nevertheless, there will always be a
point where the automation runs out. The tools described here are designed to help when that
point is reached. They are not designed to supplant anything already provided in PVS, only to
augment the capabilities so that commonly needed operations can be done more conveniently.

Three types of extensions are included. First is a set of prover strategies that allows com-
monly occurring manipulations to be performed using fewer steps. Second is a notation and
supporting implementation for an extended method of specifying input expressions when in-
voking prover commands. Third is a set of Emacs functions to improve the user interface for
invoking these strategies and ordinary prover rules as well.

Section 7 explains the major enhancements introduced in version 1.2. Section 8 explains
the major enhancements introduced in version 1.3. Section 11 lists a number of caveats and
limitations of the current version.

Manip is now fairly mature. It has been exercised successfully for over ten years by users
at NASA Langley and also at a few other sites. Further development in the near future is
not anticipated, although enhancements are possible if the need arises. Manip was originally
designed to be a separate package invoked using the PVS prelude extension feature. As of PVS
version 5.0, it is included as a built-in component of PVS.

1

2 Emacs Extensions

This set of extensions introduces PVS prover shortcuts that help when manipulating sequents.
The package streamlines interactive strategy invocation by assisting with certain types of ar-
gument entry. It adds features similar to those of the PVS prover helps package originally
developed by C. Michael Holloway of NASA Langley and now distributed with PVS. Also pro-
vided are miscellaneous Emacs features to help with proof maintenance and other assorted
tasks.

2.1 Prover Command Invocation

[Note: The features in this section were introduced in the first version of Manip. They have
been partially superseded by newer features in later versions.]

Two specific interface features are incorporated. One is a means of invoking strategies
that prompts the user through the argument list so it is unnecessary to memorize the formal
argument lists of strategies. This works for all the built-in prover rules and strategies as
well. The other feature allows the user to streamline cut-and-paste operations by supporting
argument entry via mouse-dragging selections. This is helpful when it is necessary to include
PVS expressions clipped from the current sequent. (Newer Manip features of other kinds, such
as the syntax matching capability introduced in version 1.2, have reduced considerably the need
for literal term extraction.) Both of these features are incorporated into a single TAB-command
invocation sequence.

The basic usage pattern is as follows.

• TAB-z initiates the command entry sequence. The user is prompted for the name of a
strategy (or rule) to invoke. The user will be prompted for inputs according to the formal
argument list of the chosen rule or strategy.

• To supply a value for an argument, the user has the choice of either entering text in the
minibuffer, or selecting a region of text in the prover’s Emacs buffer, either by a mouse
selection or any other means that sets point and mark.

• A typed minibuffer text argument is terminated by a CR (Return/Entry key) in the usual
way. For a text region selection, TAB-, (TAB key followed by comma) causes the text
region to be grabbed and added to the list of strategy arguments.

• Quotes are added automatically to selected text but not to typed text because it might
contain numbers or other constants. The user repeats the text entries or region selections
until all required arguments have been supplied.

• If there are &optional arguments, the user is prompted for these as well and may enter
them using the same methods. Optional argument keywords are not typed. Entering a
null string in the minibuffer for an optional argument selects its default value.

• Entering a “;” for any optional argument causes the remaining optionals to be skipped
and will proceed to the &rest argument phase if such an argument exists. Otherwise, “;”
terminates argument entry. A TAB-; (TAB-semicolon) typed after a region selection has
the same effect of moving to the next phase.

• Rest argument entry proceeds for as many values as the user wishes to supply.

2

• Entering the string “\” (single backslash character) discards the last argument and rolls
back to the previous one.

• Argument entry may be terminated at any time in the &optional or &rest phases by
supplying the value “.” in the minibuffer. Typing TAB-. (TAB-period) after a region
selection has the same effect.

• After the desired sequence of arguments has been gathered, the completed rule or strategy
command is sent to the prover.

This sequence may be abandoned at any point before completion using C-g and the partially
constructed command will be deleted from the end of the Emacs buffer.

2.2 Proof Maintenance Utilities

Several functions are available to assist with proof maintenance activities.

• Maintaining PVS proofs sometimes requires replaying previous proofs after changing one
or more theories, then editing failed steps embedded deep within the tree structure of
commands. TAB-y is a utility to assist in finding the correct proof node in the Emacs
buffer Proof, which is created by various commands such as M-x edit-proof. Position
the cursor at the beginning of a proof label such as tan increasing imp.3.2.2 in the
prover buffer *pvs*. The label will be parsed and the cursor moved to the buffer Proof

at the first step of the branch determined by the label. It is also possible to use labels
found in prover messages such as:

This completes the proof of tan_increasing_imp.3.2.2.

The period at the end of the line will be recognized as punctuation rather than a part of
the label and thus discarded by the label parser.

This feature also works with the *Proof* buffer created by the show-current-proof

command, which typically is used during ongoing proof development rather than proof
maintenance. Whichever buffer is currently displayed, Proof or *Proof*, will be searched
for a proof label. With *Proof* the cursor is placed on the last step of a branch rather
than the first.

• The interactive Emacs Lisp function M-x expand-strategy-steps allows a user to “ex-
pand” the strategy steps of a proof file, provided no proof is in progress. The user will
be prompted for a proof file name. Each rule in the proof file is checked against a list
of base rules found in the core PVS distribution. Any strategy name not found there is
appended with a ‘$’ character so that it becomes a nonatomic command, causing the next
proof attempt to expand it into steps found only in the core rule base. A backup file of
the original proofs is saved in a .sprf version of the proof file. Finally, the revised proof
file is installed to make it current.

This feature can be used for several purposes:

– It allows proofs to be developed using domain-specific strategies for increased pro-
ductivity then converted to a portable form using only core proof rules.

3

– It allows proofs to be rerun without strategies to confirm that no unsoundness has
been introduced by the strategies.

– It allows users to create personal strategies for proof development, even highly spec-
ulative ones, knowing that proofs can be easily purged of nonstandard commands
should the strategies be later discarded or abandoned.

• The interactive Emacs Lisp function M-x restore-strategy-steps allows a user to re-
store the strategy steps found in a previously saved .sprf file. The current .prf file is
simply replaced by the .sprf file. This function may not be invoked while a proof is in
progress. The restored proof file is installed to make it current.

2.3 Other Emacs Extensions

Other Emacs features and TAB key assignments are provided for miscellaneous purposes.

• Several commands described later require the user to embed parameters in control strings
using the percent (%) character. This causes a problem when installing edited proofs
because of the well-formedness checking performed by the PVS install-proof function.
In particular, % characters are interpreted as PVS comment characters, which can cause
some expressions to fail the balance checks.

To avoid this problem by suppressing the string balance checks, we have added an al-
ternative function called install-proof!. After editing a proof, a user may invoke
install-proof! using the (modified) key binding C-x C-s, while the regular version of
install-proof is still available using C-c C-i or C-c C-c.

3 Strategy Preliminaries

Before describing the actual strategies, we sketch a few noteworthy features and capabilities
that apply throughout the package. Most are concerned with the formulation of arguments
supplied during strategy invocation.

• In PVS nomenclature, a rule is an atomic prover command and a strategy is a command
that expands into one or more atomic steps. A defined rule is a command defined as a
strategy but invoked as an atomic step. What we loosely call strategies in this package
are defined rules when invoked in the normal manner. The “$” forms are the nonatomic
strategy forms, which can be used to improve diagnostic information by showing the
expansion into core PVS rules. For instance, using cancel$ instead of cancel spawns an
expanded proof.

• Many of the lemmas in prelude theory real_props are used by Manip’s arithmetic strate-
gies. Additional lemmas are needed to implement certain operations. The prelude theory
extra_real_props provides the additional real number properties used by Manip.

• As is true for the built-in prover commands, wherever a formula number is called for, a
formula label (symbol) may be supplied instead of a number. The special symbols +, −
and ∗ are also available with their usual meanings as lists of formula numbers. A special
form is provided to construct the complement of a set of formula numbers. Using the form

4

(^ n1 ... nk) wherever formula numbers are required indicates the list of all formulas
minus n1, . . . , nk. Two additional forms, (-^ ...) and (+^ ...), yield the complements
of antecedent and consequent formula lists.

• Many of the arithmetic strategies accept term numbers as arguments, which are speci-
fied in a manner analogous to formula numbers. A term’s position within its enclosing
expression determines its term number value. Rules for counting terms are based on the
arithmetic operators involved. Term numbers are expressed as integers, with term 1 des-
ignating the first (left-most) term. The special symbol ∗ is also available to denote the
list of all terms in an expression. Negative term numbers allow indexing from right to
left, that is, -1 selects term n, -2 selects term n−1, etc. The special form (^ n1 ... nk)

indicates all term numbers except n1, . . . , nk.

• The prover has many commands that allow a user to specify PVS expressions as argu-
ments. Such expressions take the form of a literal string constant such as “2 * PI * a!1”.
We have found it useful to extend this capability and allow richer forms of expressions.
Collectively these are called extended expression specifications. Section 5 describes these
features in detail. For now we note that all strategies in this package that call for argu-
ments in the form of terms or expressions may be supplied an extended expression as well
as the familiar text string form. Extended expressions provide the means to specify terms
by location reference as well as textual pattern matching, both of which offer new ways
of selecting and synthesizing one or more PVS terms. A third method based on syntax
matching was added in version 1.2 (Section 7).

• Extended expressions also collect formula number data whenever possible. Package strate-
gies accept extended expressions wherever formula numbers are required. Numeric values
are extracted from expression descriptors instead of text string components.

• Several strategies are provided in two variants to accommodate different argument types.
One variant, which typically accepts arguments based on formula numbers, suffices for
simple but common uses. The other variant, which accepts arguments based on a subset
of extended expressions called location references (Section 5.2), can support more com-
plicated uses. The second variant is distinguished by the ! character at the end of its
name.

• Proof branching is generated by some strategies where justification cases arise. Justifi-
cation proofs may be attempted by supplying a non-nil value for the optional argument
try-just, which may be either a proof step or the value t to indicate the step (grind). In
either case, if the justification branch is not proved completely, the proof state for that
branch will be rolled back so the user can make a fresh attempt.

• When we speak of inequalities in the strategy descriptions, we refer to relations from the
set {<,≤, >,≥}. The 6= operator (/=) is not included because PVS normally eliminates
such formulas by negating and moving them to the other side of the turnstile. Any
occurrences of /= may be removed by using low-level prover commands such as (prop)

and (ground).

• Most user inputs are checked for well-formedness. Some are passed on to the prover for
parsing where errors should be caught. Some bivalent argument types are drawn from a

5

set of symbols such as {L,R}. In such cases, typing any input value different from the
default (e.g., L) will be assumed to represent the default’s opposite value (e.g., R).

• Traditionally, Lisp symbols could be written in either upper or lower case. In this doc-
ument and in online documentation, we often show symbols in upper case for emphasis
(“L” is more clear than “l”, which can look like the numeral “1”). PVS built with Allegro
Common Lisp has recently become case sensitive, meaning that “L’ and “l” are different
symbols, while the CMU Lisp version of PVS remains case insensitive. We now strongly
suggest that symbols be typed in lower case for both versions. With Allegro, upper case
symbols will give incorrect results.

4 Algebraic Manipulation Strategies

This section describes a set of PVS prover strategies for manipulating arithmetic expressions
and performing other detailed proving steps. It includes strategies helpful for proving formulas
containing nonlinear arithmetic and similar expressions where PVS has limited automation. It is
important to emphasize that these strategies might not be suitable as first-choice tools. Often
it is preferable to try the more automatic prover features first, such as automatic rewriting
using theories of rewrite rules or César Muñoz’s Field strategies, then consider using these
manipulations only if the other features fail. When proving with highly complex expressions,
however, the automatic prover commands might take too long to be useful. In such cases, the
more deliberate steps available from these strategies might be preferable.

For those manipulation strategies that require explicit terms as arguments, the terms can
be specified using either text strings in the normal manner, or the extended expressions of
Section 5, or the extensions to the Emacs PVS prover helps (TAB shortcuts) described in
Section 2. Tables 1 and 2 list the various manipulation strategies provided along with their
formal argument lists.

4.1 Simple Arithmetic Strategies

This group of strategies performs common algebraic manipulations that normally are not needed
if your formulas fall within the domain of the linear arithmetic decision procedures or the rewrite
rules of prelude theory real props. Auto-rewriting with real props is often powerful enough
to prove many goals when combined with grind. Sometimes, however, it leads to excessive or
unbounded rewriting. In such cases, more deliberate steps need to be taken.

Following are descriptions of the strategies and their signatures (formal argument lists).
Invoking a strategy from the prover command line requires surrounding it in parentheses when
typed, as is usually done. Invoking one using the TAB-z method of Section 2 will cause you to
be prompted for each argument using the formal argument names shown.

swap lhs operator rhs &optional (infix? t) [Strategy]
swap! expr-loc [Strategy]

The swap strategy tries exchanging terms in commutative expressions. It replaces each ap-
plicable expression according to the scheme x ◦ y =⇒ y ◦ x. All occurrences of x ◦ y in the
sequent are replaced. Infix operators are normally expected, but prefix function application is

6

Table 1: Summary of manipulation strategies.

Syntax Function

(swap lhs operator rhs &opt (infix? t)) x ◦ y =⇒ y ◦ x
(swap! expr-loc)

(group term1 operator term2 term3 L: x ◦ (y ◦ z) =⇒ (x ◦ y) ◦ z
&opt (side L) (infix? t)) R: (x ◦ y) ◦ z =⇒ x ◦ (y ◦ z)

(group! expr-loc &opt (side L))

(swap-group term1 operator term2 term3 L: x ◦ (y ◦ z) =⇒ y ◦ (x ◦ z)
&opt (side L) (infix? t)) R: (x ◦ y) ◦ z =⇒ (x ◦ z) ◦ y

(swap-group! expr-loc &opt (side L))

(swap-rel &rest fnums) Swap sides and reverse relations
(equate lhs rhs &opt (try-just nil)) . . . lhs . . . =⇒ . . . rhs . . .
(has-sign term &opt Claims term has sign indicated

(sign +) (try-just nil))

(mult-by fnums term &opt (sign +)) Multiply both sides by term
(div-by fnums term &opt (sign +)) Divide both sides by term
(split-ineq fnum &opt (replace? nil)) Split ≤ (≥) into < (>) and = cases
(flip-ineq fnums &opt (hide? t)) Negate and move inequalities
(show-parens &opt (fnums *)) Show fully parenthesized formulas

(move-terms fnum side Move additive terms to other side
&opt (term-nums *))

(permute-terms fnum side Permute additive terms on one side
&opt (term-nums 1) (end R))

(permute-terms! expr-loc Permute terms within an expression
&opt (term-nums 1) (end R))

(elim-unary fnum &opt (side *)) Converts x±−y to x∓ y
(elim-unary! expr-loc) and −x+ y to y − x
(isolate fnum side term-num) Move all but one term
(isolate-replace fnum side term-num Isolate then replace with equation

&opt (targets *))

(cancel &opt (fnums *) (sign nil)) Cancel terms from both sides
(cancel-terms &opt (fnums *) (end L) Cancel speculatively & defer proof

(sign nil) (try-just nil))

(cancel-add &opt (fnums *)) Cancel additive terms in formulas
(cancel-add! expr-loc)

(op-ident fnum &opt Apply operator identity to rewrite
(side L) (operation *1)) expression

(op-ident! expr-loc &opt (operation *1))

(cross-mult &opt (fnums *)) Multiply both sides by denom.
(cross-add &opt (fnums *)) Add subtrahend to both sides
(transform-both fnum transform Apply transform to both

&opt (swap nil) (try-just nil)) sides of formula

7

Table 2: Summary of manipulation strategies (continued).

Syntax Function

(factor fnums &opt (side *) Extract common multiplicative factors
(term-nums *) (id? nil)) from additive terms given

(factor! expr-loc &opt

(term-nums *) (id? nil))

(distrib fnums &opt (side *) Distribute multiplication over
(distrib! expr-loc) additive terms
(permute-mult fnums &opt (side R) Rearrange factors in a product

(term-nums 2) (end L))

(permute-mult! expr-loc &opt

(term-nums 2) (end L))

(name-mult name fnum side Select factors, assign name to
&opt (term-nums *)) their product, then replace

(name-mult! name expr-loc

&opt (term-nums *))

(recip-mult fnums side) x/d =⇒ x ∗ (1/d)
(recip-mult! expr-loc)

(isolate-mult fnum &opt (side L) Select a factor and divide both
(term-num 1) (sign +)) both sides to isolate factor

(mult-eq rel-fnum eq-fnum Multiply sides of relation by
&opt (sign +)) sides of equality

(mult-ineq fnum1 fnum2 Multiply sides of inequality by
&opt (signs (+ +))) sides of another inequality

(mult-cases fnum Generate case analyses for products
&opt (abs? nil) (mult-op *1))

(mult-extract name fnum &opt Extract selected terms, name
(side *) (term-nums *)) replace them, then simplify

(mult-extract! name expr-loc

&opt (term-nums *))

also accommodated by setting the infix? argument to nil. In fact, any binary function may
be used provided its commutativity can be established.

In the ! variant, a subset of extended expressions called location references (Section 5.2)
may be used to supply the expr-loc argument. The referenced expression must be an application
of a commutative function or operator. The strategy determines whether it is an infix or a prefix
application. Multiple expression locations may result from a single expr-loc argument. Only
the first will be processed.

Usage: (swap "a!1" * "(x!1 - 2)") commutes the two factors in the multiplicative
expression a!1 * (x!1 - 2). If formula 3 is min(a!1, x!1) > 0, then (swap! (! 3 L))

rewrites the formula to min(x!1, a!1) > 0.

8

group term1 operator term2 term3 &optional (side L) (infix? t) [Strategy]
group! expr-loc &optional (side L) [Strategy]

group tries rearranging terms in associative expressions. It replaces each applicable expression
according to one of two schemes:

L : x ◦ (y ◦ z) =⇒ (x ◦ y) ◦ z, R : (x ◦ y) ◦ z =⇒ x ◦ (y ◦ z)

The ! variant allows suitable expressions to be indicated by location references.
Usage: (group "a!1" * "x!1" "u!1" R) changes the expression (a!1 * x!1) * u!1 so

it associates to the right.

swap-group term1 operator term2 term3 &optional (side L) (infix? t) [Strategy]
swap-group! expr-loc &optional (side L) [Strategy]

The previous two strategies are combined to replace according to the schemes:

L : x ◦ (y ◦ z) =⇒ y ◦ (x ◦ z), R : (x ◦ y) ◦ z =⇒ (x ◦ z) ◦ y

This might be used to “lift” a middle term out where it can be more accessible to lemmas and
rewrite rules. The ! variant allows suitable expressions to be indicated by location references.

Usage: (swap-group "a!1" * "x!1" "sq(u!1)") moves the middle term to the left.

swap-rel &rest fnums [Strategy]

Relational formulas may have their two sides swapped using this strategy, with the direction of
any inequality operators being reversed. Normally this type of transformation is unnecessary.
It might be useful in writing higher level strategies, however, where it can simplify matters to
assume that the relation is always less-than, for example. In other situations it may be used to
move preferred terms left so that rewrites are tried first on the chosen side.

equate lhs rhs &optional (try-just nil) [Strategy]

With equate a user can claim an equality between expressions and have rhs replace lhs. If
the optional argument try-just is non-nil, it will be interpreted as a prover command to invoke
for proving the justification, i.e., for proving lhs = rhs. As a special case, the value “t” may
be given to apply (grind) in the justification step. Although the effect of equate can be
achieved using the prover rule case-replace, equate obviates the explicit construction of an
equality expression and offers more convenience when used with the Emacs TAB-z feature or
the extended expression feature.

Usage: (equate "(x!1 - 2)" "a!1" (assert)) replaces (x!1 - 2) by a!1, then applies
(assert) to try to prove the equality holds.

has-sign term &optional (sign +) (try-just nil) [Strategy]

Often it is desirable to claim that a term has a certain sign or other relationship to zero.
has-sign allows the user to claim that term has a designated property, where sign can be one
of six symbols with meaning as follows:

+ - 0 0+ 0- +-

x > 0 x < 0 x = 0 x ≥ 0 x ≤ 0 x 6= 0

9

Proof of the justification step can be tried or deferred as indicated by try-just.
Usage: (has-sign "sin(phi!1 + 2*PI) - sin(phi!1)" 0 t) claims an expression has

value zero and tries to prove it using (grind).

mult-by fnums term &optional (sign +) [Strategy]

Both sides of a relational formula may be multiplied by a common factor using mult-by. For
inequality relations, when the factor is known to be positive or negative, use + or − as the sign
argument. Otherwise, use *, which introduces a conditional expression to handle the two cases
in the same manner as cross-mult (see page 13). No sign argument is needed for equalities.

The built-in prover command both-sides offers a way to achieve similar effects. mult-by,
however, provides the means to specify a term’s polarity and perform a case split accordingly,
which usually proves the justification branch automatically. With both-sides, it is often
necessary to prove the justification explicitly. Moreover, when multiplying an inequality by a
negative term, it will not formulate the desired proposition.

Usage: (mult-by 2 "y!1" -) multiplies both sides of formula 2 by y!1, which is declared
to be negative, causing the two sides of the formula to be swapped.

div-by fnums term &optional (sign +) [Strategy]

Both sides of a relational formula may be divided by a common divisor using div-by. For
inequality relations, when the divisor is known to be positive or negative, use + or − as the
sign argument. Otherwise, use *, which introduces a conditional expression to handle the two
cases in the same manner as mult-by. No sign argument is needed for equalities.

Usage: (div-by 2 "sq(y!1)") divides both sides of formula 2 by sq(y!1), which is as-
sumed to be positive.

split-ineq fnum &optional (replace? nil) [Strategy]

Given that fnum is a nonstrict, antecedent inequality (<= or >=), split-ineq forces the sequent
to split into two cases, e.g., an equal-to and a less-than case. It also works if fnum is a strict
consequent inequality. Simplification using (assert) is applied after splitting. The equality
may be optionally used for replacement by supplying the direction LR or RL for the replace?
argument.

Usage: If formula 2 is x!1 > y!1, then (split-ineq 2 RL) causes a case split on the
expression “x!1 = y!1” and performs the replacement of x!1 for y!1 in the equality branch.

flip-ineq fnums &optional (hide? t) [Strategy]

One property of the prover’s sequent representation is that a sequent having antecedent (con-
sequent) formula P is equivalent to one having ¬P as a consequent (antecedent) formula. The
prover automatically makes use of this equivalence, even though ¬P does not explicitly appear
in the sequent. In the case of an inequality relation, its negation is itself another inequality.
Occasionally a user might prefer one inequality form and location over another. Adjustments
along these lines may be accomplished using flip-ineq.

For fnums that are inequality relations, flip-ineq negates the inequalities and moves the
negated formulas by exchanging between antecedents and consequents. Conjunctions and dis-

10

junctions of inequalities are also accepted, causing each conjunct or disjunct to be negated in
an application of De Morgan’s law. If hide? is set to nil, the original formulas are left intact;
otherwise, they are hidden.

Usage: If formula 2 is “x!1 > y!1”, then (flip-ineq 2) causes “x!1 <= y!1” to be added
as a new formula -1. If formula -3 is the disjunction “x!1 > 9 OR y!1 < 6 OR z!1 >= 3”, then
(flip-ineq -3 nil) adds “x!1 <= 9 AND y!1 >= 6 AND z!1 < 3” as a new formula 1 and
retains the original formula -3.

show-parens &optional (fnums *) [Strategy]

Occasionally it is useful to see how terms are associated in a complex expression. The full
parenthesization of a formula’s term structure may be displayed using show-parens. Its be-
havior is incomplete; it does not handle all features of PVS syntax, only the common ones such
as infix and prefix function application.

As of version 3.0, PVS includes the M-x pvs-set-proof-parens function, which is also
available from the PVS menu. Turning this feature on causes sequents to be displayed with full
parenthesization. Thus, show-parens is partly obsolete, but we retain it because it offers finer
control, allowing parenthesis display only when needed and selectable by formula.

4.2 Intermediate Arithmetic Strategies

This second group of arithmetic strategies tries to carry out common manipulations without
specifying the actual terms from the sequent. This is generally desirable to prevent detailed
expressions from being saved with the proof step. Avoiding such cases can lead to more robust
proofs that require less updating when lemmas or theories are changed.

move-terms fnum side &optional (term-nums *) [Strategy]

With move-terms a user can move a set of additive terms numbered term-nums in relational
formula fnum from side (L or R) to the other side, adding or subtracting individual terms
from both sides as needed. term-nums can be specified in a manner similar to the way formula
numbers are presented to the prover. Either a list or a single number may be provided, as well
as the symbol “*” to denote all terms on the chosen side. Note that parentheses and associative
grouping are ignored for purposes of assigning term numbers, e.g., term 2 in "x + (y + z)" is
y, not y + z.

Usage: (move-terms 3 L (2 4)) moves terms 2 and 4 from the left to the right side of
formula 3.

isolate fnum side term-num [Strategy]

A special case of move-terms is offered by isolate, which moves all additive terms ex-
cept that numbered term-num from side (L or R) to the other side. If fnum is an equal-
ity, the effect is the same as solving for an additive term. Isolate is equivalent to the form
(move-terms fnum side (^ term-num)) (refer to term-number discussion on page 5).

Usage: (isolate 1 R 3) moves all right-side terms except number 3 to the left.

11

isolate-replace fnum side term-num &optional (targets *) [Strategy]

A further special case is when isolate is applied to an antecedent equality. The resulting
equality may be used to replace the isolated term in targets, after which the equality is hidden.

Usage: (isolate-replace 1 L 3 +) solves for left-side term 3 and uses the resulting equal-
ity for replacement in the consequent formulas.

cancel &optional (fnums *) (sign nil) [Strategy]

Cancellation is available through the automatic rewrites of prelude theory real props. Often
this rewriting does more than desired, however, and at other times misses opportunities for
cancellation. For these reasons, we provide a more focused operation in cancel. When the
top-level operator on both sides of a relation in fnums is the same operator drawn from the
set {+,−, ∗, /}, cancel tries to eliminate common terms using a small set of rewrite rules and
possible case splitting. No other simplification is attempted.

Cancellation is possible when fnum has one of two forms:

x ◦ y R x ◦ z, y ◦ x R z ◦ x

The types allowed for x, y, z depend on the relation and arithmetic operator involved. In the
default case, when sign is NIL, x is assumed to be (non)positive or (non)negative as needed for
the appropriate rewrite rules to apply. Otherwise, an explicit sign can be supplied to force a
case split so the rules will apply. If sign is + or -, x is claimed to be strictly positive or negative.
If sign is 0+ or 0-, x is claimed to be nonnegative or nonpositive. If sign is *, x is assumed to
be an arbitrary real and a three-way case split is used. No sign argument is needed for equality
relations.

At times, unproved cases requiring user attention are split off. Such cases can result when
the canceled term does not match the sign argument or when cancellation is invalid for other
reasons. A further caveat is that cancel only works with top-level operations. This means
that (x * y) * z = (x * a) * b will not yield to cancel, nor will it be simplified through
real props automatic rewriting. In such cases, use the cancel-terms strategy (immediately
following) or do some rearranging of the formula before attempting cancel.

Usage: (cancel 3 0-) tries to cancel from both sides of formula 3 after first splitting on
the assumption that the common term is nonpositive.

cancel-terms &optional (fnums *) (end L) (sign nil) (try-just nil) [Strategy]

Often it is desirable to cancel nonidentical terms speculatively. This capability is offered through
cancel-terms, which splits into cases on the assumption that both left-most or right-most terms
in a relational formula are equal. The user can specify at which end (L or R) of a chain of
similar infix applications to look for the allegedly common term. Associative groupings are
ignored when identifying the end term. The ‘-’ operator is considered equivalent to ‘+’ for this
purpose. On the other hand, only the outer-most application in a chain of ‘/’-separated terms
is recognized.

As an example, suppose that formula 2 is x * y * z > a * b * c. (cancel-terms 2)

will first introduce a case split on the condition x = a. Then it will use this equality to reduce
formula 2 to y * z > b * c. On the other proof branch, the user will have to establish x = a.

For inequalities, the sign argument can be used to indicate term polarity as in cancel. In
addition, an automatic proof attempt of the terms’ equality can be triggered using try-just.

12

Usage: (cancel-terms 3 L + t) tries to cancel the left-most term from both sides of
formula 3 after first splitting on the assumption that the positive terms are equal. An automatic
attempt to prove their equality using (grind) is performed.

op-ident fnum &optional (side L) (operation *1) [Strategy]
op-ident! expr-loc &optional (operation *1) [Strategy]

The cancellation strategies do not handle any “one-sided” cases, e.g., a relation of the form
x R x ∗ y. Rewriting with real_props likewise offers no benefit. We provide op-ident to
perform the setup for such cancellations and similar operations. The operator identity given
by operation is used to rewrite the expression found on side of formula fnum.

In the ! variant, a subset of extended expressions called location references is provided for
supplying the expr-loc argument (Section 5.2). Multiple expression locations may result from
a single expr-loc argument. Each will be processed separately.

Currently, the following operations are available using these designated symbols:

z+ +z -z 1* *1 /1

0 + x x+ 0 x− 0 1 ∗ x x ∗ 1 x/1

Note that symbols using ‘z’ rather than ‘0’ are used because +0 and -0 are treated by Lisp as
the number 0 rather than as symbols.

Usage: (op-ident -2 L 1*) rewrites formula -2 from b!1 < a!1 * b!1 to the equivalent
formula 1 * b!1 < a!1 * b!1. The form (op-ident! (! -2 L) 1*) achieves the same result,
although both occurrences of b!1 will be replaced.

cross-mult &optional (fnums *) [Strategy]

When the various rewrite rules fail to produce the desired effect in eliminating divisions,
cross-mult may be used to explicitly perform “cross multiplication” on one or more relational
formulas. For example, a/b < c/d will be transformed to ad < cb. The strategy determines
which lemmas to apply based on the relational operator and whether negative divisors are in-
volved. Cross multiplication is applied recursively until all outermost division operators are
gone.

cross-mult also tries to do something reasonable in case the denominators are not known
to be strictly positive or negative. Lemmas provided in theory extra real props, such as

div_mult_pos_neg_lt1: LEMMA

z/n0y < x IFF IF n0y > 0 THEN z < x * n0y ELSE x * n0y < z ENDIF

are used to carry out cross multiplication using conditional expressions. If the denominators
are of type posreal or negreal, however, these lemmas are not required.

cross-add &optional (fnums *) [Strategy]

Performing “cross addition” is handled in most cases by move-terms. There are times, however,
when it is desirable to find subtractions automatically and add the subtrahends to both sides.
This type of cross addition is performed by cross-add, applying the procedure recursively until
all outermost subtraction operators on either side of the relational formulas are gone.

13

factor fnums &optional (side *) (term-nums *) (id? nil) [Strategy]
factor! expr-loc &optional (term-nums *) (id? nil) [Strategy]

If the expression on side of each formula in fnums has multiple additive terms, factor may
be used to extract common multiplicative factors and rearrange the expression. The additive
terms indicated by term-nums are regarded as bags of factors to be intersected for common
factors. Terms not found in term-nums are excluded from this process. If side is *, both sides
will be factored separately using term-nums, which might not be useful unless term-nums is
also *. The default case of “(factor <fnums>)” tries to factor both sides (separately) using all
the terms of each side. Currently, there is no attempt to handle divisions; only multiplications
within additive terms are recognized by the factoring process.

In the ! variant, the expr-loc argument supplies a location reference to identify the target
expression(s). Multiple expression locations may result from a single expr-loc argument. Each
will be processed separately.

If the optional argument id? is set to t, then the additive terms are wrapped in an appli-
cation of the identify function id after factoring. This prevents later distribution of the mul-
tiplication operators by subsequent prover commands, which might undo the work of factor
before the factored expressions can be used.

As an example, suppose formula 4 has the form

f(x) = 2 * a * b + c * d - 2 * b

and the command “(factor 4 R (1 3) t)” is issued. Then the strategy will rearrange formula
4 to:

f(x) = 2 * b * id(a - 1) + c * d

For a more complicated example, (factor! (! 4 R (->* "cos") 1)) factors the argu-
ment of each instance of the cos function on the right side of formula 4.

transform-both fnum transform &optional (swap nil) (try-just nil) [Strategy]

A generalized “both sides” command is offered by transform-both, although it is unable to
select suitable lemmas and therefore leaves that work for the user. The idea is to apply an
arbitrary transform to both sides of a relational formula, where the transform is written as a
parameterized PVS expression. This mechanism is described in full in Section 6.1; a special
case is used here. The strategy itself may be viewed as a special case of the strategy invocations
described in Section 6.2.

The transform expression uses the string “%1” to represent the left- and right-hand side
expressions in the relation. Hence the transform can be regarded as a macro or template
expression with “%1” serving as an implicit macro or template parameter. As an example,
suppose formula −3 is “a/b = c/d.” Invoking the command

(transform-both -3 "2 * sqrt(%1)")

takes the square root of both sides of formula −3 then multiplies by 2. A case split is introduced
based on the formula

2 * sqrt(a/b) = 2 * sqrt(c/d)

14

Proof of the justification step can be tried or deferred until later. The flag swap is used to
indicate when the sides should be swapped (e.g., when multiplying by a negative number).

Usage: (transform-both 3 "-PI * %1" T (ground)) multiplies both sides by −π, swap-
ping the two sides in the process, and tries to prove the transformation is valid using ground.

4.3 Strategies for Manipulating Products

To enhance reasoning capabilities for nonlinear arithmetic, we provide several strategies for
manipulating products or generating new products. This supports an overall approach of first
converting divisions into multiplications where necessary, then using a broad array of tools for
reasoning about multiplication. Many of these manipulations apply lemmas already present in
the prelude. Use of the strategies allows proof construction without detailed knowledge of these
lemmas or the need to remember their names.

permute-mult fnums &optional (side R) (term-nums 2) (end L) [Strategy]
permute-mult! expr-loc &optional (term-nums 2) (end L) [Strategy]

When there are three or more multiplicative terms in a product, it is sometimes difficult to
make progress because the terms appear in an undesirable order or the association of terms
gets in the way of applying lemmas. This can impede the application of various simplifications
such as cancellation. To remedy the situation, a user can apply permute-mult to reorder terms
in a product.

To perform this task, as well as several others in this group of strategies, the user needs to
refer to individual terms in a product. This is done using the same method as earlier strategies.
After identifying the expression to draw terms from, the argument term-nums is used to supply
a single term number or list of term numbers. Terms in a product are numbered left-to-right
starting with number 1. Parentheses are ignored for the purpose of numbering terms.

For end = L, the action of permute-mult is as follows. Let the expression on side of a
formula in fnums be a product of terms, P = t1 ∗ . . . ∗ tn. Identify a list of indices I (term-
nums) drawn from {1, . . . , n}. Construct the product ti1 ∗ . . . ∗ til where ik ∈ I. Construct the
product tj1 ∗ . . . ∗ tjm where jk ∈ {1, . . . , n} − I. Then rewrite the original product P to the
new product ti1 ∗ . . . ∗ til ∗ tj1 ∗ . . . ∗ tjm . Thus the new product is a permutation of the original
set of factors with the selected terms brought to the left in the order requested. For end = R,
the selected terms are placed on the right.

In the ! variant, the expr-loc argument supplies a location reference to identify the target
expression(s). Multiple expression locations may result from a single expr-loc argument. Each
will be processed separately.

Usage: (permute-mult 3 L (4 2)) rearranges the product on the left side of formula 3 to
be t4 * t2 * t1 * t3, with the default association rules making it internally represented as
((t4 * t2) * t1) * t3.

name-mult name fnum side &optional (term-nums *) [Strategy]
name-mult! name expr-loc &optional (term-nums *) [Strategy]

With name-mult a user can take the action of permute-mult one step further. After selecting
and extracting a product P of subterms to place on the left of the new product, P is assigned
a name and a name-replace operation is carried out so that P = name is added as a new

15

antecedent formula. In the ! variant, if multiple locations result from expr-loc, only the first
one is processed.

Usage: (name-mult "prod1" 3 L (4 2)) rearranges the product on the left side of formula
3 to be PROD1 * t1 * t3 and adds the equality t4 * t2 = PROD1 to the antecedents.

recip-mult fnums side [Strategy]
recip-mult! expr-loc [Strategy]

With recip-mult a user can convert an expression from a division to a multiplication by the
reciprocal of the divisor. This presents an alternative way to deal with divisions from that
offered by the cross-mult strategy. Reciprocals might be preferable when it is necessary to
maintain a formula in the form of an equation such as x = y * (1/z) because substitution for
x is anticipated shortly. Reciprocals also help when applying lemmas that assume expressions
are in product form. In the ! variant, if multiple locations result from expr-loc, each is processed
separately.

Usage: (recip-mult 2 R) turns the (top-level) division on the right side of formula 2 into
reciprocal multiplication.

isolate-mult fnum &optional (side L) (term-num 1) (sign +) [Strategy]

isolate-mult is used to migrate factors from a product to a division on the other side of a
relation. Generally this is undesirable, but there are circumstances where solving for a term
found within a product is necessary to enable later replacement actions. Given that formula
fnum has the form t1 ∗ . . . ∗ tn R e (side is L), selecting term i for isolation produces the new
formula ti R e/(t1 ∗ . . . ∗ ti−1 ∗ ti+1 ∗ . . . ∗ tn). For inequalities, the sign argument may be used
to indicate when this divisor is a negative quantity. A case split is introduced to establish that
the divisor is positive or negative as claimed.

Usage: (isolate-mult 4 L 3 +) divides both sides by all of the left-side terms of formula
4 except number 3, which collectively forms a positive product.

mult-eq rel-fnum eq-fnum &optional (sign +) [Strategy]

Sometimes it is helpful to generate a new relation based on the products of terms from two
existing formulas. Given a relational formula a R b and an antecedent equality x = y, mult-eq
forms a new antecedent or consequent relating their products, a∗x R b∗y. If R is an inequality,
the sign argument can be set to one of the symbols in {+, -, 0+, 0-} to indicate the polarity
of x and y (positive, negative, nonnegative, nonpositive). A sign of * is not supported (yet).

Usage: (mult-eq -3 -2 -) multiplies the sides of formula −3 by the sides of equality −2,
which are assumed to be negative. (mult-eq -2 -2 -) would square both sides of −2.

mult-ineq fnum1 fnum2 &optional (signs (+ +)) [Strategy]

In certain cases, the terms of two inequalities can be used to generate a new inequality. Given
two relational formulas fnum1 and fnum2 having the forms a R1 b and x R2 y, mult-ineq

forms a new antecedent relating their products, a ∗ x R3 b ∗ y. If R2 is an inequality having the
opposite direction as R1, mult-ineq proceeds as if it had been y R′2 x instead, where R′2 is the
reverse of R2. The choice of R3 is inferred automatically based on R1, R2, and the declared

16

signs of the terms. R3 is chosen to be a strict inequality if either R1 or R2 is. If either formula
appears as a consequent, its relation is negated before carrying out the multiplication.

Not all combinations of term polarities can produce useful results with mult-ineq. There-
fore, the terms of each formula are required to have the same sign, designated by the symbols
+ and -. Inequalities on terms of different polarities are not supported, largely because the
truth of whether an inequality holds on the products depends on the relative magnitudes of
the products rather than just the polarity of their factors. The formulas are allowed to have
different signs, however, relative to each other. For example, fnum1 could be an inequality on
positive terms while fnum2 is on negative terms. The signs argument must be a list of two signs
denoting the polarities of fnum1 terms and fnum2 terms.

Usage: (mult-ineq -3 -2 (- +)) multiplies the sides of inequality formula −3 by the
sides of inequality −2, which are assumed to relate negative and positive values, respectively.
(mult-ineq -2 -2) would square both sides of −2.

mult-cases fnum &optional (abs? nil) (mult-op *1) [Strategy]

Case analyses for relational formulas containing products are generated by mult-cases. Two
types of relations are accommodated. If fnum has the form x∗y R 0 (or 0 R x∗y), mult-cases
will rewrite fnum to two cases relating x and y to 0, as appropriate. Some flattening and
simplification will be attempted after rewriting.

If fnum is a consequent inequality of the form a∗b R c∗d, mult-cases will generate sufficient
conditions to establish the inequality by considering relations between a and c, and between b
and d. Likewise, for an antecedent inequality of this form, mult-cases will generate necessary
conditions for fnum. The lemmas used by mult-cases contain instances of the abs function,
which are normally expanded. To suppress this expansion, set abs? to t and the applications
of abs will be retained.

Some branching of the sequent is likely with this second relational form. Moreover, when the
terms are unconstrained real values, the conditions generated are complex. Much better simpli-
fication occurs if the terms are known to be (non)positive or (non)negative. All combinations
of term polarities should produce meaningful results.

IF fnum is an inequality of the form a ∗ b R c or a R c ∗ d, fnum is first transformed into
the form a ∗ b R c ∗ d by multiplying c or a by 1. mult-op may be set to *1 (1*) to multiply on
the right (left). Case analysis then proceeds as in the general case described above.

Usage: (mult-cases 2) generates conditions for the products found in formula 2.

mult-extract name fnum &optional (side *) (term-nums *) [Strategy]
mult-extract! name expr-loc &optional (term-nums *) [Strategy]

Operating at a somewhat higher level, mult-extract performs a series of steps to simplify sums
of products and put them into a form amenable to further manipulation. First, it extracts the
additive terms specified by term-nums from the expression found on side of formula fnum.
Each additive term is treated as a product of factors, some of which may contain divisions.
Each product term thus selected is extracted using name-replace to form a new antecedent
equality. A name for each product is constructed by appending an index to the argument name.
After each equality is established, the divisors are multiplied out to remove top-level division
operations (similar to the action of cross-mult). Then common factors on both sides of each
equality are identified and canceled. In the ! variant, if multiple locations result from expr-loc,

17

only the first one is processed.
Usage: (mult-extract 2 L (1 3)) applies the prescribed sequence of manipulations to

additive terms 1 and 3 on the left side of formula 2.

5 Extended Expression Specifications

To enhance the effectiveness of prover strategies, we provide a means for specifying extended
expressions as strategy arguments. Two major types of extensions are included: location
references and textual pattern matching. Location references allow a user to indicate a precise
subexpression within a formula by giving a path of indices to follow when descending through
the formula’s expression tree. Pattern matching allows strings to be found and extracted using a
specialized pattern language that is based on, but much less elaborate than, regular expressions.
As of version 1.2, a third type based on matching PVS expressions syntactically is available
(Section 7). Together the extensions offer much more flexibility for entering PVS expressions
than simple text strings.

5.1 General Syntax

Extended expressions are specified using a combination of string literals and Lisp-oriented
notation. Evaluation of extended expressions takes place during strategy execution, yielding
sets of values that are used to form arguments to built-in prover commands. The results of
this evaluation usually denote expressions in the PVS language but need not do so. Expression
strings can be arbitrary text that will be combined later with other text to form more meaningful
strings. The substitution mechanism presented in Section 6.1 enables this type of recombination.

An extended expression is recursively defined to have one of the following forms:

• A literal text string (characters in double quotes).

• An integer denoting a formula number. The string value of such an expression is the
textual representation of the PVS formula.

• A symbol denoting either a formula label or one of the special symbols +, −, ∗, with their
usual meanings as sets of formulas.

• A location reference having the form (! <ext-expr> i1 ... in), where i1, . . . , in are
index values.

• A pattern match having the form (? <ext-expr> p1 ... pn), where p1, . . . , pn are pat-
tern strings.

• A syntax match having the form (~ s1 ... sn), where s1, . . . , sn are specification items
as described in Section 7.7.

• A list (e1 ... en), where e1, . . . , en are extended expression specifications. After evalu-
ation, the lists generated by e1, . . . , en will be concatenated into a single list.

Note that numbers when used as extended expressions do not denote numbers in the PVS
language as they usually do at the prover interface. Numbers denote formulas; string literals
such as "4" must be used to indicate PVS numbers. Similarly, formula labels must be entered as

18

symbols rather than strings, e.g., sq_fmla rather than "sq_fmla". Also note that the location
reference and pattern match forms take another extended expression as their first “argument.”
In practice, this is almost always a number or symbol. Nesting of extended expressions is
possible, although some combinations do not yield useful results.

Evaluation of an extended expression can result in zero or more separate strings or objects
being generated. Internally, evaluation produces a list of descriptors, each of which contains
a text string, the number of the formula of origination, and the Common Lisp CLOS object
that represents a PVS expression. Only the string component exists in all cases. For example,
pattern matches generally do not produce a CLOS object because matches return arbitrary
strings that need not correspond to PVS expressions.

For the strategies of Section 6.2, multiple expression specifications may be supplied as
arguments. What happens in such cases is that each specification gives rise to an arbitrary
number of descriptors. All the descriptor lists are then concatenated to build a single descriptor
list before substitutions are performed.

5.2 Location References

A location reference has the form (! <ext-expr> i1 ... in). The starting point <ext-expr>
must describe the location of a valid PVS expression. The index values {ij} are used to descend
the parse tree to arrive at a subexpression, which becomes the final value of the overall reference.
Actually, the final value is a list of expressions, which allows for wild-card indices to traverse
multiple paths through the tree. Moreover, the index values may include various other forms
and indicators used to control path generation.

Location references are so named because they specify sites within the current sequent. This
property allows them to be used as arguments for certain strategies where a mere text string
is inadequate. For example, the factor! strategy can factor an expression in place using this
feature even if the target terms appear in the argument to a function. Thus, location refer-
ences can be regarded as somewhat analogous to array or structure references in a procedural
programming language.

An example of a simple location reference is (! -3 2), which evaluates to the right-hand
side (argument 2) of formula -3. If this formula is “x!1 = cos(a!1),” then the string form of
the location reference is “cos(a!1).” Adding index values reaches deeper into the formula, e.g.,
(! -3 2 1) evaluates to “a!1.” Breadth can be achieved as well as depth; (! -3 *) evaluates
to a list having one element for each side of the formula.

Strictly speaking, formula numbers and symbols are also location references, albeit in short-
hand form. In fact, the extended expression 4 is equivalent to (! 4). This establishes the base
case for the definition. Indices determine which paths will emanate from this base expression.

Index values and directives {ij} may assume one of the following forms:

• An integer i in the range 1, . . . , k, where k is the arity of the operator or function at the
current point in the expression tree. Paths follow the ith branch or argument. If i is
the last index (in), the value returned for the location reference is the ith argument of
the current subexpression. Negative integers allow indexing from right to left, that is, -1
selects argument k, -2 selects k − 1, etc.

• One of the symbols L or R, which denote the index values 1 and 2, leading paths through
the first or second branch accordingly.

19

• The index value 0, which returns the function symbol of the current expression, provided it
is a function application. In a higher-order function application, the function itself can be
an expression, as in f(x)(y). Indices after the 0 can be supplied to retrieve components of
the function expression. Consistent with the convention for negative indices, index value
−k for the application of a function with arity k is equivalent to index 0.

• The wild-card symbol *, which indicates that this path should be replicated n times, one
for each argument expression. The values returned are those generated by all n of the
paths.

• A list (j1 ... jm) of integers indicating which argument paths should be included for
replication, i.e., a subset of the * case.

• A complement form (^ j1 ... jm) that indicates all argument paths should be followed
except those in {jk}.

• One of the deep wild-card symbols {-*, *-, **}, which indicates that this path should be
replicated as many times as needed to visit all nodes in the current subtree. The values
returned are the leaf objects (terminal nodes) for -*, the nonterminal nodes for *-, and
all nodes (subexpressions) for **.

• A text string serving as a guard to enable continuation of the current path(s). If the
function or operator symbol of the current subexpression is equal to the string, path
elaboration continues. Otherwise, the path is terminated and an empty list is returned.
Guards act to select desired paths from multiple candidates.

• A list (s1 ... sk) of strings that serves as a guard in the form of patterns to be matched
in the manner of Section 5.3.

• An extended expression form (<symb> ...) serving as a path guard. The <ext-expr>

or <fnums> starting point should be omitted from the form. Instead, the current subex-
pression is implicitly supplied as the starting point. Example: (? "=").

• A form (-> g1 ... gk) that serves as a go-to operator to specify a systematic search
down and across the subtree until the first path is found having intermediate points
satisfying all the guards {gi} in sequence. The selected path generates the final value.
Each guard gi may be either a string or list of strings, with meanings as described above.

• A form (->* g1 ... gk) that behaves the same as (-> ...) except that all eligible
paths are found and returned as values.

We note a few fine points about these features. Infix and prefix function applications are
considered equivalent for indexing purposes; in both “x!1 * y!1” and “atan(x!1, y!1),” x!1

is argument 1 and y!1 is argument 2. Out of range index values cause termination of a path
and an empty return value. The same is true of index lists that “fall off the end” of a path
by supplying too many indices. The deep wild-cards {-*, *-, **} may be followed by other
indicators, which use the various subexpressions as their starting points. During a tree search,
backtracking is performed as needed so that the go-to operators -> and ->* find any (upper
level) paths that meet the indexing specification. If there are nested applications of a function,
for example, only the upper-most subexpression will be returned.

20

Formula -1

>
�

��
+

��
*

ZZ
*

��
x!1

@@
r!1

��
y!1

@@
r!1

H
HH

-

��
r!1

@@
1

Formula -2

=

�
�

r!1

Z
Z

+

��
*

��
2

@@
x!1

@@
1

Formula 1

<

�
�

sqrt

r!1

Z
Z
sqrt

sq

/

��
x!1

@@
4

Figure 1: Expression trees for formulas in Table 3.

A few special indexing cases exist for arithmetic expressions. They result in some apparent
“flattening” of the parse tree during traversal. The conventions make indexing more convenient
for arithmetic terms and correspond more closely to our usual algebraic intuition for numbering
terms. The conventions are as follows.

• Additive terms, i.e., terms that are arguments of a + or − operator, are counted left to
right irrespective of the associative groupings that may be in effect. They are treated as
if they were all arguments of a single addition/subtraction operator of arbitrary arity.

• Multiplicative terms, i.e., terms that are arguments of a ∗ operator, are counted left to
right irrespective of the associative groupings that may be in effect. They are treated as
if they were all arguments of a single multiplication operator of arbitrary arity.

Parentheses for these associative operators are effectively ignored during the flattening process,
e.g., for the three expressions “x * (y * z)”, “x * y * z”, and “(x * y) * z”, term 2 is y

in each case.
Manip 1.2 introduced a few small changes to location references. One is the addition of a

!!-variant to suppress index flattening as described above. In the form (!! <ee> i1 ... in),
index values i1, . . . , in follow the unmodified branching of parse trees. Another change is that
repeated function names in a go-to form, such as (! 2 (->* "sq" "sq")), will descend to lower
expression(s). The second occurrence of the guard "sq" can only match a subexpression below
the first occurrence. Also, deep wild-cards now visit and include function names/expressions
(in addition to argument expressions) during node traversal.

We illustrate the formulation of location references using the notation just described. Table 3
gives the result of evaluating location references with respect to the formulas shown beneath
the table. Figure 1 depicts the expression trees for these formulas.

Combinations of indexing directives offer useful ways to find multiple expressions. For
instance, (! * R "+") finds all right-hand sides having the form of an addition. Similarly,
(! + (->* "cos") 1) finds all arguments of the cos function in the consequent formulas.
Another example is (! - "=" L), which finds the left-hand sides of antecedent equalities.

21

Table 3: Examples of location reference expressions.

Location reference Expression strings

(! -2) r!1 = 2 * x!1 + 1

(! -2 L) r!1

(! -2 R) 2 * x!1 + 1

(! -2 R 1) 2 * x!1

(! -2 R 2) 1

(! -2 R 1 2) x!1

(! -1 L 2 1) y!1

(! 1 R 1) sq(x!1 / 4)

(! 1 R 1 1) x!1 / 4

(! 1 R 1 1 2) 4

(! -2 *) r!1, 2 * x!1 + 1

(! -1 L 2 *) y!1, r!1
(! -1 L * 1) x!1, y!1
(! -1 L * *) x!1, r!1, y!1, r!1
(! -1 L (^ 1)) y!1 * r!1

(! -2 R -*) *, *, 2, x!1, 1
(! 1 R -*) sqrt, sq, x!1, 4
(! -2 R **) 2 * x!1 + 1, +, 2 * x!1, *, 2, x!1, 1
(! 1 R 1 **) sq(x!1 / 4), sq, x!1 / 4, /, x!1, 4
(! - "=") r!1 = 2 * x!1 + 1

(! -2 * "+") 2 * x!1 + 1

(! 1 (-> "sqrt")) sqrt(r!1)

(! 1 (->* "sqrt")) sqrt(r!1), sqrt(sq(x!1 / 4))

(! 1 (-> "sq")) sq(x!1 / 4)

(! 1 (-> "sq") 1) x!1 / 4

(! -1 (-> "+") *) x!1 * r!1, y!1 * r!1

(! -1 (->* "+" "*") *) x!1, r!1, y!1, r!1
(! 1 *- 0) <, sqrt, sqrt, sq, /

where the formulas are as follows:

{-1} x!1 * r!1 + y!1 * r!1 > r!1 - 1

[-2] r!1 = 2 * x!1 + 1

|-------

[1] sqrt(r!1) < sqrt(sq(x!1 / 4))

22

5.3 Pattern Matching

[Note: The features in this section were introduced in the first version of Manip. They have
been partially superseded by newer features, in particular, the syntax matching capabilities added
in version 1.2 (Section 7).]

Recall that a pattern match is specified using the form (? <ext-expr> p1 ... pn). Each
pattern pj is expressed as a text string using a specialized pattern language. Unlike location
references, pattern matches usually produce only a text string and lack a corresponding CLOS
object for a PVS expression. The patterns p1, . . . , pn are applied in order to the textual rep-
resentation of each member of the base expression list. In each case, matching stops after the
first successful match among the {pj} is obtained. All resulting output strings are collected
and concatenated into a single list of output strings.

5.3.1 Pattern Language

The pattern language was designed to meet the anticipated needs of prover users in describing
PVS expressions. Pattern matching features are implemented using a modest regular expression
package, which provides limited regular expression features, generally less sophisticated than
Perl-style regular expressions. Nevertheless, it appears to be adequate for the purpose at hand.

A pattern string may denote either a simple or a rich pattern. Simple patterns are easier
to express and are expected to suffice for many everyday matching applications. When more
precision is required, rich patterns may be used for more expressive power.

No alternation is provided in the pattern language itself. To achieve the effect of alternation,
multiple pattern strings may be supplied instead of a single pattern. Each pattern in the list is
tried in sequence until a match is obtained. Thus the output strings issue from the first pattern
to produce a nonempty result.

An empty list of patterns will match no strings. A null pattern (""), however, matches any
string but returns no useful values. Typically, various substrings are extracted and returned as
the result of the matching process. Successful matches that return no output strings result in
the default value of a single empty string.

5.3.2 Simple Patterns

Simple patterns allow matching against literal characters, whitespace fields, and arbitrary sub-
strings. Pattern strings comprise a mixture of literal characters and meta-strings for designating
text fields. Each literal character must match itself in the target string. Each field designator
matches a string of zero or more characters in the target string.

Meta-strings denote either whitespace fields or non-whitespace fields. A whitespace field is
indicated by a space character in the pattern, which stands for a field of zero or more whitespace
characters (space, tab, form feed, or newline). A non-whitespace field is a meta-string consisting
of the percent (%) character followed by a digit character (0–9). Such a field matches zero or
more arbitrary characters in the target string. Both capturing and non-capturing fields are
provided. A capturing field causes the matching substring to be returned as an output string.

The meta-string %0 denotes a noncapturing field, while those with nonzero digits are cap-
turing fields. If a nonzero digit d is the first occurrence of d in the pattern, a new capturing field
is thereby indicated. Otherwise, it is a reference to a previously captured field whose contents
must be matched. Note that the nonzero digits used must be consecutive starting with 1 (e.g.,
"%1 = %3" is improper).

23

Table 4: Examples of simple pattern matching.

Pattern Matching string(s) Captured fields

(? 1 "%1(r!1)") sqrt(r!1) sqrt

(? 1 "sqrt(sq(%1))") sqrt(sq(x!1 / 4)) x!1 / 4

(? -2 "r!1 = %1") r!1 = 2 * x!1 + 1 2 * x!1 + 1

(? 1 "%1(%0) <") sqrt(r!1) < sqrt

(? -1 "> %1 - %0") > r!1 - 1 r!1

(? 1 "%1(%0) < %1(%2)") All of formula 1 sqrt, sq(x!1 / 4)

(? (! (-2 1) R) "%1x!1") 2 * x!1, sqrt(sq(x!1 2 * , sqrt(sq(

where the formulas are as follows:

{-1} x!1 * r!1 + y!1 * r!1 > r!1 - 1

[-2] r!1 = 2 * x!1 + 1

|-------

[1] sqrt(r!1) < sqrt(sq(x!1 / 4))

We illustrate the formulation of simple patterns using the notation just described. Table 4
shows the result of matching various patterns against the sample formulas.

5.3.3 Rich Patterns

Rich patterns follow the same basic approach as simple patterns, but add extensions for multiple
matching types and multiple text field types. To be distinguished from simple patterns, rich
patterns must begin with the character ‘@’. To specify the type of matching requested, the
second character of the pattern encodes the user’s choice. Thus a rich pattern has the form
@<match type><pattern string>.

Table 5 shows the match types currently offered. Note that the default (partial string
match) can be obtained by omitting the match type code, in which case the second character
is interpreted as part of the pattern string. Obviously, this will not work if the first character
of the pattern string is one of the match type encodings.

In a full string match, the pattern must match against the entire text string under consid-
eration. A partial string match is less strict, admitting any substring that satisfies the pattern.
Generally, the left-most substring with the largest extent is chosen for a partial match.

The type-s match allows a partial match to determine a boolean outcome, then returns the
full input string as the result if successful. In effect, this lets matching be used as a filter to
allow all or none of the string to pass. None of the strings captured via %1, %2, etc., will be
included in the result. Also returned is the CLOS object for the input string, where applicable.
This allows the result of a type-s match to be used as input to a location reference.

Expression-oriented matching is also provided, which allows matching to proceed with re-
spect to the parse tree of an expression. In top-down matching, a pre-order traversal of the tree
is performed where matching is attempted at each visited node. If the textual representation of
the expression denoted by the node matches the pattern, traversal stops and returns the match

24

Table 5: Character encoding for match types.

Character Match type

f Full string match
p Partial string match (first substring to match)
s Partial match returning full string if successful
t Top-down expression matching
b Bottom-up expression matching
<digit> Top-down expression matching, skipping top-most <digit> levels
Other Partial string match

Table 6: Character encoding for text field types.

Character Field type

* Zero or more arbitrary characters
+ One or more arbitrary characters
& One or more arbitrary characters, where the first

and last are non-whitespace characters
i PVS identifier (allows ! for prover variables)
Numeric field (digits only)
Other Same as *

result. Otherwise, matching is attempted on each subexpression in left-to-right order. Cur-
rently, the most common syntactic features of PVS expressions are accommodated, e.g., infix
and prefix function applications, but not all language features are included. If a pattern does
not match as expected, it might be due to this incompleteness in the current implementation.
See the syntax matching features in Section 7 for a more capable way to match elements of the
PVS grammar.

Bottom-up expression matching (post-order traversal) may be requested as well as top-down
matching. In addition, restricted top-down matching may be performed by skipping the top
few levels of the expression tree. This is useful to avoid undesired matches caused by greedy
matching of parenthesized expressions. Naturally, complex formulas can give rise to expensive
searches when these expression-oriented forms of matching are used.

Capturing and non-capturing text fields are extended in rich patterns to allow multiple
field types. The basic field designator is extended to a three-character sequence of the form
%<digit><field type>. Table 6 shows the field types currently offered. If the field type
character is omitted, the default type is *, which is the same as the field type for simple
patterns. Field types in rich patterns enable more discriminating searches than those of simple
patterns.

To illustrate the use of these extended pattern features, Table 7 shows the result of matching

25

Table 7: Examples of rich pattern matching.

F# Pattern Matching string Captured fields

-2 @pr!1 = %1& r!1 = 2 * x!1 + 1 2 * x!1 + 1

-2 @p%1# * %2i 2 * x!1 2, x!1

-2 @s%1# * %2i 2 * x!1 All of formula -2
-2 @f%1# * %2i None
-2 @p%1# * %1 None
1 @p%1i(r!1) sqrt(r!1) sqrt

1 @p%1i(%0*) sqrt(r!1) sqrt

1 @s%1i(%0*) sqrt(r!1) All of formula 1
1 @psqrt(sq(%1*)) sqrt(sq(x!1 / 4)) x!1 / 4

-1 @p%1i - %0* r!1 - 1 r!1

1 @tsq(%1*) sq(x!1 / 4)) x!1 / 4)

1 @1sq(%1*) sq(x!1 / 4)) x!1 / 4)

1 @2sq(%1*) sq(x!1 / 4) x!1 / 4

1 @bsq(%1*) sq(x!1 / 4) x!1 / 4

-1 @1%1& * %2& x!1 * r!1 + y!1 * r!1 x!1 * r!1 + y!1, r!1

-1 @2%1& * %2& x!1 * r!1 x!1, r!1

-1 @b%1& * %2& x!1 * r!1 x!1, r!1

1 @f%1i(%0*) < %1(%2*) All of formula 1 sqrt, sq(x!1 / 4)

-2 @p%1&=%2& None

where the formulas are as follows:

{-1} x!1 * r!1 + y!1 * r!1 > r!1 - 1

[-2] r!1 = 2 * x!1 + 1

|-------

[1] sqrt(r!1) < sqrt(sq(x!1 / 4))

various rich patterns against the sample formulas.

6 General Purpose Strategies

This section describes a set of general purpose PVS prover strategies for manipulating arbitrary
sequents. They are not specialized for arithmetic. Some offer generic capabilities useful in
implementing other strategies for specific purposes. Table 8 lists the strategies provided along
with their formal argument lists.

Often prover users would like ways to capture expressions from the current sequent and
use them to build arguments to prover commands such as case. We have provided extended
expressions to achieve this capture. Next we add a parameter substitution technique to yield
a major new way to formulate prover commands. To complete the suite, we add a family
of higher-order strategies that substitute strings and formula numbers into a parameterized

26

Table 8: Summary of general purpose strategies.

Syntax Function

(invoke command &rest expr-specs) Invoke command by instantiating
from expressions and patterns

(for-each command &rest expr-specs) Instantiate and invoke separately
for each expression

(for-each-rev command &rest expr-specs) Invoke in reverse order
(show-subst command &rest expr-specs) Show but don’t invoke the

instantiated command
(claim cond &opt (try-just nil) Claims condition on terms

&rest expr-specs)

(name-extract name &rest expr-specs) Extract & name expr, then replace

(move-to-front &rest fnums) Reorder sequent formulas
(rotate--) Rotate antecedent list
(rotate++) Rotate consequent list

(use-with lemma &rest fnums) Use a lemma with formula
preferences for instantiation

(apply-lemma lemma &rest expr-specs) Use lemma with expressions
(apply-rewrite lemma &rest expr-specs) Rewrite with expressions

(unwind-protect main-step cleanup-step) Invoke step, then cleanup actions,
even if main goal was proved

command (rule or strategy). The command can be regarded as a template expression (actually,
a Lisp form) in which embedded text strings and special symbols can serve as formal parameters
for substitution.

Consider a simple example. Suppose formula 2 is

sin(2 * PI * omega!1 + delta!1) >= 0

and we wish to claim that the sin argument is nonnegative. The command

(invoke (case "%1 >= 0") (! 2 L 1))

accomplishes this task by invoking the prover command

(case "2 * PI * omega!1 + delta!1 >= 0")

as if it had been typed in this form.
The reasons for having such a capability, along with the extended expressions of Section 5,

are to:

• Reduce the amount of typing or other data entry required, such as that described in
Section 2.

27

• Make it easy to construct new expressions using (possibly large) fragments of the current
sequent as subexpressions.

• Reduce the brittleness of proofs by avoiding the inclusion of complete expressions from
the current sequent in stored proof steps.

• Make it easy to construct specialized strategies that are instances of more general ones.

We envision the higher-order strategies as being more useful during later stages of proof devel-
opment, especially when finalizing a proof to make the permanent version more robust. During
preliminary stages of a proof, it is easier to work directly with the actual expressions. Once the
outline of a proof is firm, pattern matching and location reference features can be introduced
to abstract away excessive detail.

6.1 Parameter Substitution

The outcome of evaluating an extended expression can be used to carry out textual and symbolic
substitutions within a parameterized command. Such a command is assumed to be a Lisp form:

(<rule/strategy> <argument 1> ... <argument n>)

The argument expressions can be numeric, textual, or symbolic values as well as parenthesized
expressions. This can lead to nesting of arbitrary depth. As usual at the prover interface,
neither the top-level parenthesized expression nor its arguments are evaluated as normal Lisp
expressions. The interpretation of arguments is left for the command to carry out when it is
finally invoked.

Input data for the substitution process is a list of expression descriptors computed during
the evaluation of one or more extended expression specifications. As described in Section 5,
each descriptor contains a text string and, optionally, a formula number and CLOS object. The
descriptor list is the source of substitution data while the parameterized command is its target.

Within this framework, we allow two classes of substitutable data: literal text strings and
Lisp symbols. The top-level parenthesized expression is traversed down to its leaves. Wherever
a string or symbol is encountered, a substitution may be performed. The final command thus
produced will be invoked as a prover command in the manner defined for the chosen higher-order
strategy. (Lisp programmers can think of this process as evaluating a backquote expression with
specialized implicit unquoting.)

Parametric variables for substitution are allowed as follows. Within literal text strings, the
substrings %1, . . . , %9 serve as implicit text variables. The substring %1 will be replaced by the
string component of the first expression descriptor. The other %-variables will be replaced in
order by the corresponding strings of the remaining descriptors.

Aggregations may be obtained using the string %* and its variants. %* will be replaced by a
concatenation of all expression strings. %, behaves the same except that it separates the strings
using the delimiter “, ”.

Certain reserved symbols beginning with the $ character are provided to serve as substi-
tutable symbolic parameters. Such symbols are not embedded within string constants as are the
%-variables; they appear as stand-alone symbols within the list structure of the parameterized
command. The symbols $1, $2, etc., represent the first, second, etc., expression descriptors
from the list of available descriptors. These symbols should be used as arguments to strategies

28

Table 9: Special symbols for command substitution.

Symbol Value

$1, $2, ... nth expression descriptor
$* List of all expression descriptors
$1s, $2s, ... nth expression string
$*s List of all expression strings
$1n, $2n, ... Formula number for nth expression
$*n List of all formula numbers
$1j, $2j, ... CLOS object for nth expression
$*j List of all CLOS objects
$+, $+s, $+n, $+j Duplicate-free versions of $*, $*s, $*n, $*j

that require a location-reference type of extended expression. They may be used as arguments
for strategies in this package whenever terms or formula numbers are called for.

Variants of these symbols exist to retrieve the text string, formula number, and CLOS
object components of a descriptor. These are needed to supply arguments for built-in prover
commands, which are not cognizant of extended expressions. The symbols $1s, $1n and $1j

serve this purpose. Note that CLOS object values have no use when entering prover commands
from the keyboard. They are provided for the convenience of strategy writers.

Aggregations may be obtained using the symbol $* and it variants. A list of all source
expression descriptors is given by $* while the list of strings and formula numbers is given
by $*s and $*n. Because one formula might be associated with multiple expressions, the
descriptor list can contain duplicate formula numbers. A list without duplicates is available
from the symbol $+n. Table 9 summarizes the special symbols usable in substitutions.

We note that when using the list-valued symbols, their values are “spliced” into the sur-
rounding Lisp expression. If they are used in a context that requires parentheses, they need
to be supplied by the user. For example, if $+n has the value (1 3 5), then (hide $+n)

will be expanded to (hide 1 3 5). Conversely, (hide-all-but ($+n)) will be expanded to
(hide-all-but (1 3 5)). In the following sections we present more examples of how the
%-variable and $-variable substitutions are applied to produce a final instantiated command.

6.2 Invocation Strategies

The following higher-order strategies make use of the parameter instantiation features to con-
struct and invoke prover command instances.

invoke command &rest expr-specs [Strategy]

This strategy is used to invoke command (a rule or strategy) after applying substitutions ex-
tracted by evaluating the expression specifications expr-specs. All expression descriptor lists
are appended to form a single list before substitution occurs. Note that there is not a one-to-
one correspondence between descriptors and expression specifications. Each specification can
produce zero or more descriptors.

29

As an example, suppose formula 3 is

f(x!1 + y!1) <= f(a!1 * (z!1 + 1))

Then the command

(invoke (case "%1 <= %2") (? 3 "f(%1) <= f(%2)"))

would apply pattern matching to formula 3 and create the bindings %1 = "x!1 + y!1" and %2

= "a!1 * (z!1 + 1)", which would result in the prover command

(case "x!1 + y!1 <= a!1 * (z!1 + 1)")

being invoked. An alternative way to achieve the same effect using location referencing is the
following:

(invoke (case "%1 <= %2") (! 3 * 1))

String substitutions are not limited to command arguments that accept PVS language
expressions. They may also be used to construct function, lemma and theory names.

As another example, suppose we wish to hide most of the formulas in the current sequent,
retaining only those that mention the sqrt function. We could search for all formulas containing
a reference to sqrt using a simple pattern, then collect all the formula numbers and use them
to invoke the hide-all-but rule. Applying invoke as follows

(invoke (hide-all-but ($+n)) (? * "sqrt"))

would hide all formulas except those containing the string sqrt.

for-each command &rest expr-specs [Strategy]

This strategy is used to invoke command repeatedly, once for each expression generated by
expr-specs. The effect is equivalent to applying (invoke command <expr i>) n times.

As an example, suppose we wish to expand every function in the consequent formulas
that has the expression “n!1 + 1” as its argument. The following command carries this out,
assuming there is only one such expression per formula.

(for-each (expand "%1") (? + "@p%1i(n!1 + 1)"))

for-each-rev command &rest expr-specs [Strategy]

This strategy is identical to for-each except that the expressions are taken in reverse order.
As an example, suppose we wish to find all the antecedent equalities and use them for

replacement, hiding each one as we go. This needs to be done in reverse order because formula
numbers will change after each replacement.

(for-each-rev (replace $1n :hide? t) (! - "="))

show-subst command &rest expr-specs [Strategy]

This strategy does not invoke any commands, but applies the matching and substitutions as
the strategy invoke would. The instantiated command is displayed so the user can see the
result of substitutions without actually attempting any proof commands. The idiom

30

(show-subst ($*) <ext expr 1> ... <ext expr n>)

allows a convenient display of the descriptors produced by evaluating extended expressions.
Tweaking the expressions and iterating enables the user to converge on a correct formulation
before invoking an actual prover command.

claim cond &optional (try-just nil) &rest expr-specs [Strategy]

The claim strategy is basically the same as the primitive rule case, except that the formula
expression is derived using the parameterization technique described in Section 5. It also differs
by being limited to only two-way case splitting. The condition presented in argument cond is
a parameterized string expression of the kind described in Section 6.1. It may be instantiated
by the terms found in the &rest argument expr-specs. For example, to claim that a numerical
expression lies between two others, we could use something like

(claim "%1 <= %2 & %2 <= %3" nil "a/b" "x+y" "c/d")

to generate a case split on the formula:

a/b <= x+y & x+y <= c/d

Argument try-just allows the user to try proving the justification step (the second case re-
sulting from the case split).

Usage: (claim "%1 + PI = %2" T "phi!1" "theta!1") introduces a claim and tries to
prove it using grind.

name-extract name &rest expr-specs [Strategy]

Rather than invoking a command, this strategy is used to compute a list of expressions, then
extract each expression string from it, assign a name to the expression, and finally, replace
the expression by the name. If expr-specs evaluates to multiple expressions, unique names
are formed by appending an index to name. The equality formulas generated by the inter-
nal name-replace commands are not hidden. This strategy is useful for removing embedded
expressions and lifting them to one side of an equality formula, where the various arithmetic
manipulation strategies can be applied thereafter.

Usage: (name-extract angle (? 3 "2 * sin(%1)")) applies the pattern to find the ar-
gument to the sin function, giving it the name ANGLE, then replaces it throughout the sequent.

6.3 Substitution Shortcuts

To streamline user input for simple cases, we provide the following shortcuts usable during the
substitution process.

• Embedding extended expressions in strings. Commands such as

(claim "%1 < %2" nil (! 1 2) (! 3 4))

may be rewritten to a form that embeds the extended expressions in the target string:

(claim "%! 1 2% < %! 3 4%")

31

Location references may be embedded by replacing the outer-most parentheses with per-
cent characters. After evaluation, the first expression string generated by each location
reference will replace the corresponding %!...% substring. Concurrent use of %-variables
in the same string is possible. Embedding pattern match expressions is also possible but
not recommended because of the need to escape quote characters.

• Embedding extended expressions in list structures. Commands such as

(invoke (hide $*n) (? + "cos"))

may be rewritten to a form that embeds the extended expressions in the target list:

(invoke (hide (? + "cos")))

Either location references or pattern match expressions may be embedded this way. The
effect is to extract the formula numbers yielded by the evaluation and substitute them for
the (! ...) or (? ...) sublist. If the results need to be contained in a single list argument
to a rule, add an extra set of parentheses, as in:

(invoke (hide-all-but ((? + "cos"))))

These shortcuts also support the newer syntax-matching form (~ ...) introduced in version
1.2 (Section 7.7). Bear in mind that the shortcuts apply only in limited contexts. For greater
flexibility, use the general substitution mechanism as described in Sections 6.1 and 6.2.

6.4 Defining New Strategies

Invocation strategies are useful as building blocks for more specialized strategies that users
might need for particular circumstances. Extended expressions can support an alternative to
the more code-intensive strategy-writing style that requires accessing the data structures (CLOS
objects) representing PVS expressions. The invocation strategies can make writing lightweight
strategies more accessible to users without a deep background in Lisp programming.

Consider a simple example. We wish to automate a specialized type of backward chaining
process. Suppose a consequent formula exists having the form f(e1) <= f(e2) for two expres-
sions e1 and e2. If f is monotonic and we know we can prove that e1 ≤ e2, this would suffice to
establish the consequent formula. So we would like to back-chain on this goal to produce the
new goal e1 <= e2. The following strategy definition accomplishes this task by applying the
pattern matching features.

(defstep backchain-leq (fnum)

(let ((case-step

‘(invoke$ (case "%2 <= %3") (? ,fnum "@f%1i(%2*) <= %1(%3*)"))))

(branch case-step ((assert) (skip))))

"Backchain on inequality in FNUM for monotonic function."

"~%Backchaining on inequality in formula ~A")

The pattern recognizes the desired inequality form for an arbitrary function and extracts the
embedded arguments. A case rule invocation is constructed using these expressions. Of the
two goals produced by the case rule, one is simplified using assert, while the other is the main
branch left for the user to continue.

32

6.5 Formula Reordering Strategies

The next group of strategies includes several for manipulating the order of formulas within
a sequent. Formula reordering can be helpful before instantiating quantifiers using inst? or
applying lemmas via the use rule. It also can be helpful as a component of higher level strategies
where uniform placement of formulas is needed.

move-to-front &rest fnums [Strategy]

Invoking move-to-front on a list of formulas causes them to be pulled to the front of their
respective lists (antecedents or consequents). They remain in the same relative order that they
appeared initially regardless of the order in which they are listed in argument fnums. Example:
(move-to-front -4 3 -2 2) causes the new order to become -2, -4, -1, -3 ` 2, 3, 1.

rotate-- [Strategy]
rotate++ [Strategy]

These strategies cause the antecedent (--) or consequent (++) formulas to be “rotated,” i.e.,
the first formula is moved to the end and all the others move up by one.

6.6 Lemma Invocation Strategies

This final group of strategies is used to invoke lemmas in various ways not already provided by
the built-in prover commands.

use-with lemma &rest fnums [Strategy]

The use command for importing and instantiating lemmas sometimes chooses wrong or useless
variable instantiations. We could improve the chances for correct selection in some cases by
reordering the formulas so that preferred terms are tried earlier in the instantiation process.
The use-with strategy implements this heuristic by creating a temporary copy of the terms in
fnums and placing it at the front of the sequent (formula -1). Then a use command for lemma
is invoked so that the search for instantiable terms begins with the temporary formula. The
effect is to consider terms from the user’s preferred formulas (in the order given) before looking
elsewhere in the sequent. Instantiation heuristics apply various criteria for suitability so this
tactic might not achieve the desired effect.

Usage: (use-with "sin_gt_0" 3 -2) tries to instantiate the variables of sin_gt_0 by first
examining the terms of formulas 3 and -2.

apply-lemma lemma &rest expr-specs [Strategy]
apply-rewrite lemma &rest expr-specs [Strategy]

Occasionally is it necessary to provide explicit instantiations when applying lemmas or rewrite
rules. This happens when the prover’s automatic instantiation heuristics fail to pick out the
desired expressions. In such cases, these two strategies provide an abbreviated way to force the
binding of expressions to lemma variables. It is necessary to know the lemma variable names
so that the expressions can be supplied in the correct order. PVS lists lemma variables in
alphabetical order when the inst command is invoked. This is the order in which expressions

33

should be supplied in the strategy command. apply-lemma has an effect similar to the use

command. apply-rewrite is similar to rewrite, although only equality rules are currently
handled.

6.7 Utility Strategies

Common Lisp includes the function unwind-protect so programmers can mitigate some conse-
quences of run-time failures. In particular, this function arranges for exceptions during expres-
sion evaluation to trigger cleanup actions so that important state restorations can be performed
in all cases.

A similar need arises during PVS proofs, except the need is to protect oneself from success
rather than failure. Sometimes strategies executing on a user’s behalf find it necessary to take
actions that temporarily change the prover’s state. An example is the need to turn on certain
rewrites before beginning a proof sequence. Because of the way PVS works, if the current
subgoal is proved during this strategy, its execution is terminated and any additional steps it
wished to perform, such as turning off rewrites after the proof attempt, will not be carried out,
possibly to the detriment of parallel subgoals. To compensate for this behavior, we provide the
following strategy.

unwind-protect main-step cleanup-step [Strategy]

The proof step main-step is attempted. After this step is finished, whether it proved its goal
or not, the cleanup-step will be performed. State-changing actions should be invoked within
main-step, and their complementary actions should be invoked within cleanup-step.

7 Syntax Matching

A new type of matching and rule invocation was introduced in version 1.2 that allows users
to match against syntactic structures within PVS expressions. Unlike string-based pattern
matching (Section 5.3), syntax matching works with parse trees that are implicit in PVS’s
object representation of formulas. A syntax pattern P is (usually) a string containing a PVS-
language expression with optional pattern variables. P will be parsed and its syntax tree forms
the pattern to match against formulas’ parse trees and their subtrees. Information derived
from this process can then be used to initiate proof steps. A new type of extended expression
specification based on this feature was added to complement those of Section 5.

For many uses, these concepts offer more powerful and convenient ways to accomplish the
tasks described in Sections 5 and 6. A full description of supported features is presented below.
Readers wishing to see examples may skip ahead to Section 7.6.

7.1 A Syntax Matching Strategy

A single top-level matching strategy is provided to conduct syntax-based expression search and
proof-step generation. This strategy comes in several variants that support a rich variety of
user options. Its interface is therefore more complicated than typical prover strategies. Instead
of the usual fixed list of arguments, we provide a more flexible way to specify inputs.

34

match &rest item-specs [Strategy]

This strategy is used to match one or more patterns against the formulas of the current sequent,
then instantiate the matching expressions in a parameterized proof rule, and finally, invoke the
resulting rule with optional steps for proving the branches. The list item-specs is a free-form
sequence of symbols, strings and parenthesized Lisp expressions for specifying patterns and
intended actions. Parsing of these items is performed internally within the match strategy.

The general form is

(match [?] [fnums] P1 . . . Pn [onums] [action] [T1 . . . Tk] [! S1 . . . Sk+2])

where the various items have meaning as follows:

• The optional ? symbol, which also may be written show, indicates that the action should
not be performed. Instead, information about matching instances and generated expres-
sions will be displayed, showing what proof step would be executed.

• The fnums field is used to specify which formula numbers should be searched by the
pattern matcher. Formula numbers may be specified in the usual way, i.e., as explicit
numbers or lists of same or one of the symbols {+, -, *}. The entire sequent (*) is the
default search range.

• The list P1, . . . , Pn contains one or more syntax patterns. Details of pattern specification
are presented below (Section 7.4).

• To indicate which of several possible matches should be considered the chosen instance(s),
the field onums allows the stipulation of occurrence numbers. The default value is 1,
meaning the first matching occurrence should be picked. A number, a list of numbers, or
the symbol * may be supplied for onums.

• If supplied, the action value should be either: one of the symbols {rep, case, step}; one
of the PVS function symbols used as binary relational or boolean operators; or the name
of a prover rule or strategy.

• The template expressions T1, . . . , Tk should be either strings or parenthesized s-expressions.
Typically they contain embedded template variables that will receive substitutions from
the pattern matches. Details are provided below (Section 7.5).

• After the delimiter symbol ! there can appear proof steps S1, . . . , Sm, where m ≤ k + 2.
These can be either parenthesized s-expressions, optionally containing embedded template
variables, or numbers used as abbreviations for proof rules (see Table 10). Numeric values
provide a coarse scale to indicate how strenuously a proof should be tried.

An optional comment may be inserted at the end of a match invocation. The symbol “--”
serves as the beginning of a comment, as in the following example:

(match lambda * -- "find all lambda expressions")

Any Lisp forms after the -- delimiter will be ignored, except that they remain with the proof
step and are retained in the proof file.

35

Table 10: Numeric codes or abbreviations for branch steps.

Code Proof Rule Code Proof Rule

0 (skip) 5 (ground)

1 (prop) 6 (smash)

2 (bddsimp) 7 (bash)

3 (simplify) 8 (reduce)

4 (assert) 9 (grind)

7.2 Principal Forms

Depending on the value of the action field in the item specification list, there are several possible
variants in the use of the match strategy.

• (match [fnums] P1 . . . Pn [onums])
In the simplest variant, no action is present, only patterns. The effect is to conduct
matching and display the results. Figure 2 shows an example. No change to the proof
state occurs as this case is equivalent to the proof command (skip). This match form is
useful for collecting and examining similar subexpressions from a complex sequent.

• (match [?] [fnums] P1 . . . Pn [onums] rep [T] [! S1 . . . S3])
Equality replacement is performed when action has value rep. The first expression
matched by pattern P1 is replaced by the expression derived from template T . If T
is absent, the second matching pattern instance P2 is used instead. Introducing optional
proof steps Si is discussed in Section 7.3.

• (match [?] [fnums] P1 . . . Pn [onums] op [T] [! S1 . . . S3])
If op is a PVS relational operator or binary boolean operator, this variant will perform a
case split on LHS op RHS, where LHS and RHS are derived as for rep.

• (match [?] [fnums] P1 . . . Pn [onums] case T1 . . . Tk [! S1 . . . Sk+2])
An arbitrary case rule may be formulated by introducing multiple templates T1 . . . Tk,
one for each case expression. Each may have a separate proof step in S1, . . . , Sk.

• (match [?] [fnums] P1 . . . Pn [onums] rule [! S1 S2])
An existing proof rule or strategy may be invoked on the expression instances E1, . . . , Em

that match patterns P1, . . . , Pn. The step (rule E1 . . . Em) will be constructed, which is
not usable with many built-in prover rules, but could be of benefit with strategies.

• (match [?] [fnums] P1 . . . Pn [onums] step T)

Finally, the step form is the most general, allowing template T to be instantiated as
desired to create an arbitrary proof step to submit to the prover.

36

Rule? (match -2 "deriv(%)" *)

[Manip.match]

Pattern Matches:

{-2} %1 : deriv(LAMBDA (x: real_abs_lt1):

deriv(atanhN(n!1))(x) -

x * x * deriv(atanhN(n!1))(x))

{-2} %2 : deriv(atanhN(n!1))

{-2} %3 : deriv(atanhN(n!1))

{-2} %4 : deriv(deriv(atanhN(n!1)))

{-2} %5 : deriv(atanhN(n!1))

{-2} %6 : deriv(deriv(atanhN(n!1)))

{-2} %7 : deriv(atanhN(n!1))

{-2} %8 : deriv(atanhN(n!1))

No change on: (match -2 "deriv(%)" *)

atanh_taylors_prep6.1.1.1.1.1.1 :

...

[-2] deriv(LAMBDA (x: real_abs_lt1):

deriv(atanhN(n!1))(x) - x * x * deriv(atanhN(n!1))(x))

=

(LAMBDA (x: real_abs_lt1):

deriv(deriv(atanhN(n!1)))(x) -

x * x * deriv(deriv(atanhN(n!1)))(x))

+ (LAMBDA (x: real_abs_lt1): -2 * (x * deriv(atanhN(n!1))(x)))

Figure 2: Example of a display-only invocation of match.

7.3 Control of Proof Steps

In most forms of Section 7.2, optional proof steps may be specified to advance the proof along the
branches created by the main action. Control is provided by the Manip strategy branch-back,
which was added in version 1.2 to support match.

branch-back step steplist [Strategy]

The purpose of branch-back is to invoke a branching step and initiate subproofs for the branches
with automatic backtracking for any steps that fail to completely prove their goals. It is similar
to the built-in strategy branch, except that the elements S1, . . . , Sn of steplist are attempted
in an all-or-nothing fashion. If step Si for a branch fails to prove its goal completely, the proof
state for branch i is rolled back to the point before Si was invoked.

Branch steps are typically used to prove the justification for a main action or any TCCs that
get generated as a by-product of the main action. It is helpful to apply aggressive strategies
such as grind in such cases. When they finish, however, they can leave the proof state for
a branch unrecognizable to the user. It often better to have an atomic, transactional type of
behavior that rolls back the state on failure.

In the forms of Section 7.2, if there are k template expressions, up to k + 2 steps may be
supplied. The first k steps are used for proofs that arise from the k main branches, and default

37

to (skip). Step k+1 is used for the “else” branch of case splits, and defaults to (grind). Step
k + 2 is used for any additional branches spawned by TCCs, and defaults to (assert).

7.4 Pattern Specifications

Syntax patterns are written using one of the following forms:

• A symbol denoting a syntax class. The pattern matches any PVS expression of the desig-
nated class. Type expressions are allowed as well. Tables 11 and 12 list the syntax classes
supported, which currently include every top-level expression category other than TABLE.
Partial support is provided for COND. Example: lambda.

• A PVS expression in string form with optional pattern variables. The expression must
be a syntactically well-formed PVS expression, except for the pattern variables, which
begin with “%” and can appear wherever an identifier would be allowed. The expression
needs to be parseable after pattern variables are substituted by valid identifiers. Example:
"sin(%a)".

• One of the symbols &0, &1, . . . , denoting repetition of the previous pattern. A symbol &k
is expanded into a full pattern that is a copy of the previous pattern with its occurrence
count incremented by k. Thus, &1 denotes the second occurrence, &2, the third, etc.

• A fully specified form: ([fnums] pattern [onums]). The fnums and onums fields
have the same meaning as described in Section 7.1, except that these are local bindings
effective only for a single pattern, and they override the corresponding global bindings.
Example: (+ tuple *).

Internally, all patterns are mapped into fully specified forms by inserting global formula and
occurrence number specifications where needed.

A string pattern also may take the “anchored” form "^<pattern>$", where the meaning
is similar to corresponding notation in regular expressions. In this case, anchoring is relative
to formulas. Thus, "^% = %$" matches formulas where the top-level operator is “=”; it will
not match interior occurrences of “=”. Where they apply, anchored searches are both faster
and more precise. Currently, one-sided anchoring ("^..." or "...$") is not supported; if used,
such patterns will invoke two-sided, fully anchored matching.

In addition to repetition using &k, another form of pattern repetition is provided. If pattern
specifications Pi and Pi+1 have identical expression and formula number fields, and Pi+1 does
not contain an occurrence number field, then Pi+1 will acquire an occurrence number that is
one greater than Pi’s. An example is (match lambda lambda), where this is expanded into:

(match (* lambda 1) (* lambda 2))

Pattern variables represent arbitrary PVS expressions or other syntactic elements that may
appear in the variable’s context. Pattern variables may have several forms:

• A nonbinding expression variable indicated by %. This subpattern matches any PVS
expression or syntax element. The subexpression matched will not be remembered.

• A binding expression variable of the form %v. This subpattern matches any PVS expres-
sion or syntax element, and the subexpression matched will be remembered and associated
with %v. Any string forming a valid PVS identifier may be used in place of v.

38

Table 11: Elements of PVS expression syntax supported for matching.

Symbola Syntax Class Example Instance(s)

number Numeric constant 123, 456

name_ Name expression z, airborne?, a!1, max_size, empty?[real]

infix Infix operator application x + y, P OR Q

unary Unary operator application -a, NOT P

applic Function application f(x, y), z/2

lambda Lambda expression LAMBDA (n: nat): 2 * n

forall Universal quantification FORALL x: P(x)

exists Existential quantification EXISTS n: odd?(n)

quant Arbitrary quantification FORALL i: P(i), EXISTS j: Q(j)

bind Binding expression LAMBDA x,y: x * y, EXISTS j: Q(j)

if_ IF expression IF P(x) THEN x ELSE 1 ENDIF

cond COND expression COND x > 0 -> 1,..., ELSE -> 0 ENDCOND

proj Projection application t‘1, (a,b)‘2

field_ Field application r‘f, state‘time

tuple Tuple expression (1, 2, 3), (a, b)

record_ Record expression (# time := 0, day := 1 #)

set Set expression { x | 0 < x AND x < 8 }

null Empty list (: :)

list List expression (: a, b, c :)

let_ LET expression LET a = sqrt(b), c = cos(d) IN a * c

where WHERE expression a * a WHERE a = sqrt(b)

assign Assignment time := 0, day := 1

update Override expression f WITH [(0) := 9]

select Selection null: 0, cons(a,b): len(b)+1

cases CASES expression CASES s OF null: 0,... ENDCASES

coerce Coercion n :: posnat, x/2 :: fraction

bracket Bracket expression [| 1, 2, 3 |]

paren_vbar Parenthesis-vbar expression (| 1, 2, 3 |)

brace_vbar Brace-vbar expression {| 1, 2, 3 |}

string String expression "terminal area"

aTrailing underscores are used to distinguish certain classes from identically named prover rules.

Table 12: Elements of type-expression syntax supported for matching.

Symbol Syntax Class Example Instance(s)

type_name Type name expression nat, set[real], functions[int, real]

subtype Subtype expression {x | x > 0}, {n: nat | n < 6}, (prime?)

type_applic Type application below(8), upto(limit)

funtype Function type [real -> real], [nat, int -> time]

tupletype Tuple type [nat, nat], [nat, int, real]

recordtype Record type [# time: real, day: int #]

39

• A nonbinding expression-list variable indicated by %%. This is similar to % except that it
matches a nonempty, comma-separated list of PVS expressions such as the argument list
in a function application. Not all syntactic lists can be matched in this way because %%

can only appear where an identifier is allowed by the PVS grammar.

• A binding expression-list variable indicated by %%v. This is the binding variable form of
the previous case.

• A nonbinding expression variable with syntax-class restriction indicated by %{class}. El-
igible names for class are the symbols from Tables 11 and 12. Any expression of the
requested type will be matched.

• A binding expression variable with syntax-class restriction indicated by %v{class}. This
is the binding variable form of the previous case.

Binding of pattern variables causes an association list of variable names and expressions
to be collected. These are used for display purposes and to support template substitutions
as described in the next section. Moreover, the full subexpressions matched by patterns are
also collected and associated with names %1, %2,. . . , which likewise are used for display and
substitution.

One further consideration concerns the treatment of binding variables that are repeated
within a pattern or list of patterns. At times one would like multiple instances of the same
variable to mean that they can only match identical subexpressions. At other times, such as
when match is used for information display and multiple instances occur implicitly, one would
prefer the matching to be unconstrained and allow different subexpressions to match variables of
the same name. Implicit binding-variable duplication happens when multiple match occurrences
are requested, as in (match "sqrt(%x)" *).

Manip uses a convention based on variable names to allow both types of binding to be
specified. For pattern variables that begin with an uppercase letter, all matching subexpressions
for that variable are constrained to be “type-check equal.” For all other pattern variables,
subexpression matching is unconstrained by the value of the expression. Here are several
examples to illustrate patterns and what they could match:

"%a * %a" matches x!1 * x!1, x!1 * y!1, 4 * x!1

"%A * %A" matches x!1 * x!1

"sin(%a)" "cos(%a)" matches sin(2*x!1), cos(2*x!1); sin(y!1), cos(z!1)

"sin(%A)" "cos(%A)" matches sin(2*x!1), cos(2*x!1)

7.5 Template Substitution

Having collected pattern variable bindings in the search phase, the match strategy applies this
binding information to perform substitutions into the template expressions T1, . . . , Tk as well
as the proof steps S1, . . . , Sm. Template expressions need only include template variables for
this to occur. Templates also may be devoid of such substitutable variables. Proof steps may
lack them as well, where it is more common not to use them.

Templates are written in one of the following forms:

• A string optionally containing %-variables. The string is typically a PVS expression with
template variables inserted where substitutions are desired. Template variables refer to

40

the string values of pattern variables with corresponding names, e.g., %1,. . . ,%9 and %a,
%v, etc.

• A symbol denoting a PVS expression or formula number. These symbols begin with the $
character and are the same as those described in Section 6.1 (see Table 9). For example,
to refer to the string form of the PVS expression for the first pattern matching instance,
use symbol $1s. To refer to its formula number, use $1n.

• A parenthesized s-expression. This expression form is used for creating proof steps. Em-
bedded within the s-expression may be both $-symbols and %-variable substrings. Sub-
stitutions for these embedded parameters will be performed.

Because simple textual substitutions are performed on the templates, sufficiently distinct vari-
able names should be chosen so that one is not a prefix of any other. If, for example, both %a

and %ab are used, the substitution for %a could alter %ab in the template before its substitution
occurs.

If a string is used where a proof step is required, the string will be “read” as a Lisp s-
expression (i.e., parsed but not evaluated). Including embedded substrings requires escaping
the double-quote characters. For example, the string "(case \"x!1 = y!1\")" becomes the
s-expression (case "x!1 = y!1") after being “read” by the Lisp interpreter.

7.6 Use Cases

Several examples of typical use cases are presented below.

• (match lambda *)

Find and display all lambda expressions in the sequent.

• (match + "sin(%)" "% * %" *)

Find and display all expressions of the form sin(a) and all product terms found in the
consequent formulas.

• (match - "[%%d -> %r]" *)

Find and display all function type expressions in the antecedent formulas, showing range
types and lists of domain types.

• (match ? lambda &1 rep)

Show the first two lambda expressions and the rule generated for replacing the first by
the second.

• (match lambda &1 rep ! (bash))

Same as the previous case except actually carry out the step and apply bash afterwards.

• (match "4*%a" rep "2*(2*%a)" ! 9)

Create a rewrite rule on-the-fly that replaces the first expression of the form 4a by 2(2a).
Try proving the rule afterwards with grind.

• (match -2 "sin(%a)" < "%a/2" ! 0 4)

Find the argument to the first application of sin in formula -2 and introduce a case split
on sin(a) < a/2. Use skip as the follow-up step for the main branch and assert for the
else branch.

41

• (match (-2 "sin(%a)") (-3 "%b/2") case "%1 < %2" "%1 = %2")

Find sin(a) in formula -2 and b/2 in formula -3 and split on the cases sin(a) < b/2 and
sin(a) = b/2.

• (match - "sqrt(%)" (1 2) case "%1 < %2")

Find the first two applications of sqrt in the antecedents and split on the case
√
x <
√
y.

• (match - "f(%a{infix})" * typepred)

Apply typepred to every expression f(a) found in the antecedent formulas, where each
argument a has the form of an infix function application.

• (match - "%f(tan(%x),tan(%y))" 2 step (mult-by -1 "%f(%x,%y)"))

Find the second occurrence of an expression of the form f(tan(x), tan(y)), then invoke
the mult-by step using the factor f(x, y).

7.7 Extended Expression Forms

The extended expression notation has been expanded in version 1.2 to accommodate syntax
matching features. These features can be used in Manip strategies wherever extended expres-
sions were allowed before. The general form is

(~ [fnums] P1 . . . Pn [onums] [-> T1 . . . Tk])

where the various items have the same meaning as for the match strategy. The primary differ-
ence is that an extended expression (~ . . .) evaluates to a list of PVS expressions that will be
used as needed by the context, typically another Manip strategy or one from a different package
altogether.

Several variants are possible, yielding different expression results.

• (~ [fnums] P1 . . . Pn [onums])
In the simplest variant, only patterns are present. The effect is to conduct matching and
collect a list of expressions that match patterns in their entirety (%1, %2, . . .).

• (~ [fnums] P1 . . . Pn [onums])
In the next variant, the form is the same but the patterns contain binding pattern variables
(e.g., %a). In this case, the expressions returned correspond to what was matched by the
binding variables (%a, %b, . . .).

• (~ [fnums] P1 . . . Pn [onums] -> T1 . . . Tk)

Finally, the most general form overrides these conventions when explicit templates are
provided. What it returns is the list (E1 . . . Ek) that results from substituting in the
templates (T1 . . . Tk).

Here are a few examples to illustrate possible uses:

• (mult-by -2 (~ "cos(% / %)"))

• (factor! (~ "% + 2 * %"))

• (div-by (~ "^% > 1/2$") (~ "cos(%a / %b)" -> "sqrt(%a) * %b"))

42

In the last example, (~ "^% > 1/2$") matches a full formula and makes its formula number
available to the strategy div-by.

Expressions having form (~ [fnums] P1 . . . Pn [onums]) may be used wherever location
references (i.e., expressions with form (! ...)) are allowed, such as arguments to factor! and
similar strategies. On the other hand, expressions of the form

(~ [fnums] P1 . . . Pn [onums] -> T1 . . . Tk)

cannot serve this purpose if the templates evaluate to strings or numbers after substitution.

7.8 Automatically Deriving Abstract Patterns

One additional feature has been included to facilitate the creation of syntax patterns. This
feature allows users to select a PVS expression in the Emacs proof buffer (*pvs*) using a
mouse dragging gesture, after which Manip will find a suitable syntax pattern for matching the
expression. Patterns are synthesized so as to make them fairly abstract and eliminate much of
the subexpression detail found in the sequent. In so doing, we hope to create patterns that will
be robust in the face of specification changes, thereby maximizing the patterns’ successful use
during reproof attempts.

In practical terms, here is the procedure for using this feature:

• A user begins by moving the mouse cursor in the *pvs* Emacs buffer to the beginning
of the desired expression. Typically this point lies somewhere in the sequent display just
above the current command line (i.e., near the bottom of *pvs*).

• Next the user presses the left mouse button, drags it to the end of the desired expression,
then releases it. Typical Emacs behavior is to add background highlighting or shading to
the text region selected. (Instead of dragging, any Emacs operations that set point and
mark can be used to define the region.)

• Now, without moving the mouse cusor from the region (or without changing point and
mark), the user types a TAB-key sequence to invoke the preferred pattern generation
procedure. TAB-% chooses a plain syntax pattern. TAB-~ chooses a pattern wrapped as
an extended expression, i.e., TAB-~ gives the form (~ <pattern>).

• At this point Manip does some searching and after a short delay deposits a string at
the end of the *pvs* buffer containing the generated pattern. Presumably this is in the
midst of a partially typed match strategy invocation (for the TAB-% form), or another
rule/strategy (for the TAB-~ form).

• The pattern is merely text in an Emacs buffer so the user is free to embellish it, move it,
delete it, etc., before invoking the proof command under construction.

• If the chosen text region is not a valid PVS expression of the current sequent, an error
message is displayed in the status line at the botton of the Emacs window. For a valid
expression, the region’s background highlighting is removed and its text color is changed
to red.

• Often the right end of an expression is difficult to locate because it lies within a sequence of
right parentheses. Manip compensates by allowing the user to end the selected region close

43

{-1} deriv(LAMBDA (x: real_abs_lt1):

deriv(atanhN(n!1))(x) - x * x * deriv(atanhN(n!1))(x))

|<------ A ----->| |<------- B ------->|

= |<----------- C ----------->|

(LAMBDA (x: real_abs_lt1):

deriv(deriv(atanhN(n!1)))(x) -

|<---------- D -------->|

x * x * deriv(deriv(atanhN(n!1)))(x))

|<-------------- E --------------->|

+ (LAMBDA (x: real_abs_lt1): -2 * (x * deriv(atanhN(n!1))(x)))

|<------------- F ------------>|

|<------------------------- G -------------------------->|

Figure 3: Example with highlighted regions for creating abstract patterns.

to the actual endpoint but not necessarily on the exact character. Nearby delimiters, white
space and letters within an identifier will be examined and skipped over as appropriate
to find the actual endpoint of a syntactically valid expression.

• If the expression in the user’s selected region also occurs earlier in the sequent, the gen-
erated pattern will not make this distinction. It will match the first occurrence.

Besides user convenience, a goal of this pattern-generation feature is to create patterns
heuristically that continue to be useful in the future as the user’s theorems and proofs evolve
over time. To achieve this, we strip out excess detail, trying to retain only the high level
structure of an expression. Pattern variables % and %% are introduced liberally to replace
subexpressions. Although a small pattern is sought, a minimum “specificity” is applied to
keep from losing robustness at the other extreme, namely, with overly abstract patterns. For
example, the first formula of a sequent (-1) will always match the universal pattern "%". If we
used this pattern, though, the proof would fail in the future should another formula come first.
We strive for reasonably generic patterns but not maximally generic ones.

Similar to the case of Table 11, all valid PVS expressions except TABLE can be subject to
pattern generation. For small expressions and those having unsupported syntax, the “pattern”
returned will be the original expression itself. Moreover, those syntax elements that do not form
a complete PVS expression cannot generate patterns at all. Examples of such non-expression
syntax elements are assignments from a WITH expression and selections within a CASES construct.
Also, some expression types will have certain subexpressions always represented by % or %%. This
approach is taken to limit the combinatorial expansion that can arise from considering too many
alternatives.

To better visualize pattern generation, consider the PVS formula in Figure 3, showing
several of its expressions as regions A-G. Table 13 displays the patterns that would be created
by TAB-% invocations on these regions.

An additional TAB-key generates patterns for matching entire formulas. TAB-^ prompts for
one or more formula numbers, then inserts a form (~ "^<pattern>$" ...) at the end of buffer
pvs. With this extended expression form, users can let patterns identify formulas, obviating
the need for concrete formula numbers and reducing future efforts in proof maintenance. TAB-^

44

Table 13: Abstract patterns derived for text regions in Figure 3.

Region Derived Syntax Pattern Notes

A "deriv(atanhN(%))" "deriv(%)" is considered too generic
B "deriv(%)(%)" Two applications make it specific enough
C "% * deriv(%)(%)" First % matches x * x

D "deriv(deriv(%))" Two applications again
E "% * deriv(deriv(%))(%)" Extra detail needed to distinguish from C
F "% * (% * %)" * is normally left-associative
G "LAMBDA (%): % * %" %% would be emitted for multiple bindings

can be combined with other Manip features to achieve this effect. For instance,

(invoke (hide (~ "^<pattern>$")))

will hide the first formula matching <pattern>. (Strategies in Manip and Field do not need
invoke to achieve this effect because they process extended expressions automatically. For
built-in prover rules, though, invoke would be needed.)

Finally, several Lisp variables are available to fine tune the behavior of the pattern generator.
Variables can be changed within the prover using this idiom:

(lisp (setf <variable> <value>))

Normal usage should not require alteration; these variables are provided in case unusual situa-
tions arise.

A sketch of the generation algorithm will help in understanding how to use these values.
Given a highlighted expression E, Manip performs a traversal of E’s syntax tree to identify its
subexpressions. This process is limited to a maximum depth. At each stage, Manip collects
alternative subexpressions that can be represented by various combinations of syntax variables
(%, %%) and actual terms. After interleaving these alternatives, a list of possible patterns results.
A weight or “specificity” value is computed for each alternative pattern to indicate roughly how
much of E’s tree it contains. The list is then sorted by ascending specificity values. Those having
a specificity below the minimum are discarded, then the next N are chosen as final candidates.
These will be tried in order until the first one that successfully matches E is found.

max-gen-pattern-depth [default: 6] [Variable]

The maximum depth of tree traversal in the generation algorithm is capped by this value.

max-gen-pattern-try [default: 12] [Variable]

Match attempts during the search process are limited to at most *max-gen-pattern-try*

candidate patterns.

min-pattern-specificity [default: 3] [Variable]

This variable stores the minimum specificity threshold for candidate patterns.

45

7.9 Additional Considerations

It is important to be mindful of a few limitations when using the syntax matching features.

• Syntax matching and textual substitution can take PVS subexpressions out of context,
possibly inserting them into new contexts where they are invalid. For example, a subex-
pression containing bound variables will most likely produce semantic errors when sub-
mitted back to the prover.

• Although type expressions are supported, they are not always recognized because PVS
syntax does not distinguish them in all cases. For instance, (prime?) and below(8)

appearing as patterns by themselves are assumed to be value expressions rather than
type expressions.

• Because of the recursive representation used by PVS for some syntax classes, a search for
instances of such a class might return interior objects as well as top-level objects. Results
could differ from what one would expect based on the printed form of PVS expressions.

• Objects for some syntax classes have implicit ELSE conditions that do not appear in the
printed representation. Searches can match subexpressions of such implicit conditions.

• Using %% to match expression lists is not always possible because this feature is not fully
compatible with the PVS grammar. For example, both (%%) for tuples and (# %% #) for
records will fail, although for different reasons. The former will be parsed as an ordinary
parenthesized expression while the latter is disallowed by the grammar.

• Large formulas having many similar subexpressions can lead to noticeable search times
when performing matching. A more efficient search might be obtained by including con-
text terms that occur infrequently.

8 Library Extension Framework

Some mathematical domains such as vectors of reals have operations that share many algebraic
properties with the reals. Given that it would be highly desirable to use Manip strategies on
expressions of such types, an extension framework was added to Manip in version 1.3 to support
this kind of generalization.

The basic idea is to introduce an object-orientation technique for strategies. Within the
Lisp code for a strategy, different methods can be invoked according to the types of the PVS
objects involved. This allows a uniform interface for strategies, where each one performs a
function based on the conventional algebraic properties for reals. For types that share (some
of) those properties, the same strategy can be invoked in the same manner by the user. This
simplifies the proof process by reducing the need for users to apply type-specific lemmas.

A division of labor has been introduced in support of this architecture, where the Manip core
can be extended by functionality that resides in PVS libraries, such as the vectors library that
is distributed with the NASA PVS library suite. The core Manip strategies perform the basic
operations on reals as they always have. Some of these strategies have been generalized to allow
their use with types other than real. In such cases they also provide the front-end processing
for steps where they are operating on non-real types. The back-end processing that is more

46

type-specific will be contributed by extensions from the relevant library. These extensions take
the form of Lisp code residing in the library’s directory. A file named “pvs-strategies” in
this directory will be loaded when the first library-related proof is started, which in turn will
load additional Lisp files as needed.

CLOS classes are used to dispatch methods according to operand types. The methods for
reals are built in to the Manip core. Those for library-specific types such as vectors are declared
within Lisp files in the library’s directory. These files will register the library extensions available
to Manip users. This happens when the extension files are loaded, which occurs when the first
proof using the library is started.

8.1 Extension Example: Vectors

The extensions for vector types as implemented in the NASA vectors library are summarized
in Table 14. When this library is included in the user’s context, a summary can be obtained
by invoking this command:

(help manip-vectors)

Shown in the table are existing Manip strategies and how they can be used to operate on
vectors or combinations of reals and vectors. Descriptions of the extended strategies and their
operation on reals are presented in Section 4.

8.2 New Strategies

To complement the extension of existing Manip strategies, several new strategies were intro-
duced whose actions are not normally needed for reals, but will work for reals as well as other
types such as vectors. They were introduced to help make up for processing normally carried
out by decision procedures in a fully automatic fashion.

permute-terms fnum side &optional (term-nums 1) (end R) [Strategy]
permute-terms! expr-loc &optional (term-nums 1) (end R) [Strategy]

Occasionally it is desirable to reorder the additive terms within an expression to facilitate future
manipulations or the application of rewrite rules. To perform this task, permute-terms allows
the specification of term numbers for gathering the selected terms and placing them at either
end of the new expression. Terms in a sum are numbered left-to-right starting with number 1.
Parentheses are ignored for the purpose of numbering terms.

For end = L, the action of permute-terms is as follows. Let the expression on side of
formula fnum be a sum of terms, S = t1 ± . . . ± tn. Identify a list of indices I (term-nums)
drawn from {1, . . . , n}. Construct the sum ti1 ± . . . ± til where ik ∈ I. Construct the sum
tj1 ± . . . ± tjm where jk ∈ {1, . . . , n} − I. Then rewrite the original sum S to the new sum
ti1 ± . . .± til ± tj1 ± . . .± tjm . Thus the new sum is a permutation of the original set of terms
with the selected terms brought to the left in the order requested. For end = R, the selected
terms are placed on the right.

In the !-variant, the expr-loc argument supplies a location reference to identify the target
expression(s). Multiple expression locations may result from a single expr-loc argument. Each
will be processed separately.

47

Table 14: Vector-aware strategies (for Manip 1.3).

Strategy name Vector-specific operations

swap Commutes vector sums and dot products.
group Associates vector sums and scalar/dot products.
swap-group Combination of these two actions.
mult-by Create scalar products or dot products according to types

in formula and new term.
div-by Dividing by real x creates scalar product (1/x) ∗ v ;

dividing by vector u creates scalar product (1/norm(u)) ∗ v.
move-terms Behaves with vector sums exactly as for reals.
cross-mult Acts on divisors in the real part of scalar products.
factor Factors the real and vector parts of sums of scalar products.

isolate These strategies work for vectors because they invoke
isolate-replace vector-aware strategies internally (specifically, move-terms).
cross-add

permute-mult These strategies work the same on scalar products as for
name-mult real products, although their actions are limited to the

real parts of scalar products.

permute-terms These strategies are new in version 1.3.
elim-unary See Section 8.2 for a description.
cancel-add

distrib

Usage: (permute-terms 3 L (4 2)) rearranges the sum on the left side of formula 3 to
be t4 + t2 + t1 - t3, with the default association rules making it internally represented as
((t4 + t2) + t1) - t3.

cancel-add &optional (fnums *) [Strategy]
cancel-add! expr-loc [Strategy]

Cancellation of additive terms for reals is normally unnecessary. The decision procedures can
handle such cases quite well. In other domains, however, cancellation is not so automatic. To
deal with these cases in supported libraries, cancel-add provides a capability similar to what
is available for reals.

Cancellation is possible when fnum has one of two forms:

(1) . . .+ x+ . . .− x+ . . . = z, (2) . . .+ x+ . . . = . . .+ x+ . . .

In other words, it can cancel terms that appear on both sides of a relation (provided they have
the same sign), and it can cancel terms having opposite signs on the same side of a relation.
This latter case also applies when the cancel-add! form is used. The positions of canceling

48

terms within their expressions is irrelevant; cancel-add will locate them and apply deductions
as needed. Note that equality might be the only relation that can work for a given domain.

Usage: (cancel-add 2) tries to cancel additive terms from both sides of formula 2.

elim-unary fnum &optional (side *) [Strategy]
elim-unary! expr-loc [Strategy]

Expressions of additive terms sometimes contain terms having the unary minus operator. For
some domains, and even for reals, the normal algebraic simplification one would expect does
not always take place. For example, x+−y might not simplify to x− y. This specialized type
of reduction is performed by elim-unary. It forms a new expression by collecting all positive
terms and placing them on the left, followed by all negative terms placed on the right. All unary
minus operators are eliminated in favor of binary minus. Only in the case where all terms are
negative will there remain any unary negations.

Usage: (elim-unary 2) eliminates unary minus operators from both sides of formula 2.

distrib fnum &optional (side *) (term-nums *) [Strategy]
distrib! expr-loc [Strategy]

The inverse operation of factor is distrib, which distributes multiplication over factors having
the form of additive subexpressions. For reals, this action is performed automatically during
core proof commands such as assert. For other domains, this action might need to be invoked
explicitly, which is the reason for distrib. The term numbers refer to top-level additive terms
in the formula or expression where distribution is desired. The other terms in the formula will
remain intact.

Usage: If terms 1 and 3 on the right side of formula 2 have the form x ∗ (a + b) and
y ∗ (c− d), (distrib 2 R (1 3)) distributes multiplication in those terms to form x ∗ a+x ∗ b
and y ∗ c− y ∗ d.

9 Support Functions

Several Common Lisp functions defined in this package might be of use to strategy writers. All
Lisp objects are available to any strategy layer built on top of Manip. The functions below
are used to access PVS data structures and perform other frequently needed chores. In general
they return nil when called with ill-formed arguments such as invalid formula numbers.

get-equalities [Function]

get-equalities returns a list of formula numbers for all antecedent equalities found in the
current sequent.

get-relations fnums [Function]

Collect the formula numbers for all the relational formulas in the current sequent, omitting the
case of the /= operator.

49

map-fnums-arg fnums [Function]

Use map-fnums-arg to map fnums into a list of concrete formula numbers, converting the
symbols +, −, ∗ and formula labels as needed.

extract-fnums-arg fnums [Function]

This utility extracts a list of formula numbers from an input that could include either extended
expressions or conventional formula numbers.

map-term-nums-arg tnums [Function]

Use map-term-nums-arg to map tnums into a list of concrete term numbers, converting the
symbol ∗ and special form (^ ...) as needed.

manip-get-formula fnum [Function]

manip-get-formula retrieves from the current goal the PVS data object corresponding to the
formula specified in fnum. For an antecedent formula, the unnegated form is returned. The
object returned is a CLOS object instance belonging to whatever class corresponds to the
top-level PVS expression.

percent-subst pattern values [Function]

Textual substitution of template variables %1, . . . ,%n, as discussed in Section 6.1, is performed
by percent-subst using the list of values provided. Ideally, the number of elements in list
values should equal n, the number of template variables.

percent-to-regexp-pattern pattern [Function]

This function maps a pattern written in the pattern language, i.e., strings involving text field
designators, into a regular expression suitable for matching and collecting substrings. The
resulting regular expression may be passed to the Common Lisp function match-regexp to
carry out pattern matching and obtain a multiple-value outcome.

eval-ext-expr expr-spec [Function]

Extended expression specifications are evaluated by this function. It returns a list of expression
descriptors, each of which is a structure containing the values <expr string>, <fnum> and
<CLOS object>. Use the access functions ee-string, ee-fnum and ee-pvs-obj to retrieve
these components from a descriptor. Some descriptors will not have meaningful values for each
component; the value nil is supplied in such cases. Also, the function returns nil if the input
expr-spec is ill-formed.

build-instan-cmd cmd descriptors [Function]

An instantiated command is constructed by this utility function. Substitutions for all special
symbols are performed and a fully instantiated command is returned as the function’s value.

50

Table 15: Package file summary.

File name Purpose

manip-guide.pdf User’s manual (this document)

pvs-prover-manip.el User interface functions and utilities

manip-strategies.lisp Prover strategies for manipulation
extended-expr.lisp Extended expression functions for Manip
syntax-matching.lisp Functions for syntax matching feature
manip-utilities.lisp Various support functions for package
pregexp.lisp Generic regular expression package developed by Dorai Sitaram

debug-utils.lisp Debugging utilities for strategy writers
debug-utils.el Optional Emacs support for utilities

try-justification name try-just [Function]

Generate a step using TRY that tries to prove a justification branch using try-just and backtracks
on failure.

suppress-manip-messages [Variable]

Setting this variable to a non-nil value suppresses Manip’s display of errors, warnings and
status messages. Returning the value to nil restores normal message display behavior.

10 Files

There are several files included with this package. Their functions are summarized in Table 15.
These files can be found in the source code distribution of PVS (version 5.0 and later).

11 Caveats

• This version of the package has been developed for and tested on PVS version 5.0 (Apr
2011). As currently configured, it will not work with earlier versions.

• Error checking in Manip should be adequate but is not complete. Some erroneous user
inputs will not be cited as such, but will result in strategies having no effect. Although
applying a strategy could result in a Lisp error, this should be rare. If it happens, restore
the prover’s state (Ctrl-D is convenient for this purpose), review the strategy’s input
expressions for problems, and retry using modified inputs.

• Some strategies invoke name-replace as an internal step using names chosen by the
strategy procedures. The naming convention followed is to use identifiers ending in a
double underscore, e.g., x1__. Refrain from using such names to avoid conflicts.

51

• Due to a limitation of the regular expression module being used, the pattern matching
implementation for the features in Section 5.3 does not recognize the length-one case for
%d& text fields.

• When using the higher-order strategies (e.g., invoke or for-each) with substitutions
based on the full extended expression descriptors (e.g., $1, $2, etc.), the prover might
reject the command. If this happens, try changing the parameterized command to its $-
form. For example, instead of (invoke (swap-rel $1) (? - "<=")), try the nonatomic
form (invoke (swap-rel$ $1) (? - "<=")). Changing $1 to $1n is another way to
avoid this problem.

12 Conclusion

It is our belief that tactic-based theorem proving holds much promise for automating domain-
specific reasoning. To date, this area has received moderate attention from the formal methods
and theorem proving communities. Nevertheless, much more effort has gone into developing
other capabilities, such as decision procedures and rewrite rules. While these are undoubtedly
valuable, there is still ample room for other advances, particularly those that can leverage the
accumulated knowledge of experienced users of deduction systems. We hope this set of tools
offers a practical contribution to the area of tactic-based proving.

The Manip package has been exercised successfully for over ten years by users at NASA
Langley and also at a few other sites. Further development in the near future is not anticipated,
although enhancements are possible if the need arises. Feedback of any kind is still encouraged.
We also welcome users to build on these features when developing their own personal strategies.
Future enhancements will most likely be additions so that current features should remain intact.

Acknowledgments

The need for this package and many initial ideas on its operation were inspired by Ricky Butler
of NASA Langley. Additional ideas and useful suggestions have come from César Muñoz of
NASA Langley, and John Rushby and Sam Owre of SRI. We appreciate their insightful input
and feedback. Special thanks go to Sam Owre for his support in adding Manip to the standard
PVS distribution.

52

Index

max-gen-pattern-depth, 45
max-gen-pattern-try, 45
min-pattern-specificity, 45
suppress-manip-messages, 51
apply-lemma, 33
apply-rewrite, 33
branch-back, 37
build-instan-cmd, 50
cancel-add!, 48
cancel-add, 48
cancel-terms, 12
cancel, 12
claim, 31
cross-add, 13
cross-mult, 13
distrib!, 49
distrib, 49
div-by, 10
elim-unary!, 49
elim-unary, 49
equate, 9
eval-ext-expr, 50
extract-fnums-arg, 50
factor!, 14
factor, 13
flip-ineq, 10
for-each-rev, 30
for-each, 30
get-equalities, 49
get-relations, 49
group!, 9
group, 9
has-sign, 9
invoke, 29
isolate-mult, 16
isolate-replace, 11
isolate, 11
manip-get-formula, 50
map-fnums-arg, 49
map-term-nums-arg, 50
match, 34
move-terms, 11
move-to-front, 33

mult-by, 10
mult-cases, 17
mult-eq, 16
mult-extract!, 17
mult-extract, 17
mult-ineq, 16
name-extract, 31
name-mult!, 15
name-mult, 15
op-ident!, 13
op-ident, 13
percent-subst, 50
percent-to-regexp-pattern, 50
permute-mult!, 15
permute-mult, 15
permute-terms!, 47
permute-terms, 47
recip-mult!, 16
recip-mult, 16
rotate++, 33
rotate--, 33
show-parens, 11
show-subst, 30
split-ineq, 10
swap!, 6
swap-group!, 9
swap-group, 9
swap-rel, 9
swap, 6
transform-both, 14
try-justification, 51
unwind-protect, 34
use-with, 33

53

