
Hardware Verification Using PVS *

Mandayam Srivas, Harald Ruefl, and David Cyrluk

1. I n t r o d u c t i o n

The past decade has seen tremendous progress in the application of formal
methods for hardware design and verification. Much of the early work was
on applying proof checking and theorem proving tools to the modeling and
verification of hardware designs [Gord83b, Hunt89]. Though these approaches
were quite general, the verification process required a significant amount of
human input. More recently, there has been a large body of work devoted to
the use of model checking, language containment, and reachability analysis
to finite-state machine models of hardware [C1Gr87a, BCMD92, BCLM94].
The latter class of systems work automatically but they do not yet scale up
efficiently to realistic hardware designs. The challenge then is to combine
the generality of theorem proving with an acceptable level of effective and
efficient automation.

Our main thesis is that in order to achieve a balance between generality,
automation, and efficiency, a verification system must provide powerful and
efficient primitive inference procedures that can be combined by means of
user-defined, general-purpose, high-level proof strategies. This design philo-
sophy has formed the guiding principle for the implementation of the PVS
system [OwRS92, ORRS96, ORSH95]. It combines an expressive specification
language with an interactive proof checker that has a reasonable amount of
theorem proving capabilities. PVS is designed to automate the tedious and
obvious low-level inferences while allowing the user to control the proof con-
struction at a meaningful level. Exploratory proofs are usually carried out
at a level close to the primitive inference steps, but greater automation is
achieved by defining high-level proof strategies. When compared to other
proof checkers, the primitive inference steps of PVS are very powerful as
they are implemented using a set of powerful decision procedures.

The domain of problems that have been investigated with PVS involves
verification of industrial-strength microprocessors [MiSr95, SrMi95a, Cyr196],
protocol verification [Hoom95, HaSh96, PaDi96a, Shan92], arithmetic cir-
cuits [RUSS96, Rues96, MiLe96], real-time properties [Shan93, Hoom94],
fault tolerance [ViBu92, Mine93, Rush93], and clock synchronization [Shah92,
Rush94, MiJo96].

* The development of PVS was funded by SRI International through IR&D funds.
Various applications and customizations have been funded by NSF Grant CCR-
930044, NASA, ARPA contract A721, and NRL contract N00015-92-C-2177.

Hardware Verification using PVS 157

Although PVS is a general purpose theorem prover, it supports the spe-
cific needs of hardware verification through the use of an expressive specific-
ation language, a bit-vector library, decision procedures for equality, linear
arithmetic, and arrays, propositional simplification based on binary decision
diagrams, and integration of symbolic model checking.

While PVS is capable of verifying a wide variety of hardware circuit
designs, most of the large verifications we have performed are in the area of
pipelined microprocessors and complex arithmetic circuits at register transfer
level. The reason we have concentrated our effort on datapath-intensive cir-
cuits at register transfer level is because theorem-proving techniques are most
effective in these domains. Also~ the inadequacy of conventional simulation-
based CAD tools is most pronounced at register transfer levels and higher
for complicated designs involving, for example, pipelining. So, we will de-
vote most of this chapter to describing the approaches to verification in these
domains of applications.

This chapter is organized as follows. Sect. 2. contains a comparison of
PVS with related theorem proving systems, and in Sect. 3. we describe the
basic features of the PVS specification language and the PVS prover. Pre-
dicative and functional styles of hardware descriptions in PVS are discussed
in Sect. 4. In that section we also demonstrate the capabilities of the PVS
specification language to model generic hardware components. The next two
sections are devoted to specifications, methodologies, and proofs for verify-
ing microprocessors and arithmetic circuits. Sect. 5. includes a description of
the basic methodology of processor verification together with the verification
of toy processors including the Tamarack processor and a discussion of how
these techniques scale up for verifications of industrial-strength processors.
Sect. 6. provides a description of a hierarchical verification of a combina-
tional multiplier. In that section, we also outline the verification of an SRT
division circuit that is similar to the one in the Pentium microprocessor. Fi-
nally, Sect. 7. summarizes the experiments we have performed on verifying
the circuits (single pulser, arbiter, Black Jack, FIR filter) used throughout
this book.

2. R e l a t e d W o r k

The PVS system is engineered by combining a number of theorem proving
techniques some of which were pioneered and proven effective in other sys-
tems. For example, NUPRL [Cons86] and VERITAS [HaDa92a] provide pre-
dicate subtypes and dependent types, and the theorem proving techniques
draw on LCF [GoMW79], the Boyer-Moore prover [BoMo79, BoMo88], and
on earlier work at SRI [Shos84]. Historically, theorem proving systems have
made a trade-off between expressiveness of the logic/specification language
supported and the degree of effective automation provided. PVS differs from
others in its aggressive use of decision procedures and in tightly integrating

